-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
53f799e
commit 08bc454
Showing
1 changed file
with
130 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
""" | ||
Copyright, 2021-2022 Ontocord, LLC, All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
import re | ||
import fsspec | ||
import copy | ||
from collections import Counter | ||
from datasets import load_dataset | ||
from transformers import AutoConfig, AutoModel, AutoTokenizer, RobertaForTokenClassification, M2M100ForConditionalGeneration, M2M100Tokenizer, pipelines | ||
import spacy | ||
from tqdm import tqdm | ||
import difflib | ||
from transformers import pipeline, MarianMTModel, XLMRobertaForTokenClassification, BertForTokenClassification, ElectraForTokenClassification | ||
import random | ||
from torch.nn.functional import cosine_similarity | ||
import langid | ||
import json | ||
import os | ||
import time | ||
import gzip | ||
from functools import partial | ||
import argparse | ||
import re, regex | ||
import itertools | ||
import torch | ||
from torch import multiprocessing | ||
import sys | ||
from huggingface_hub import hf_hub_url, cached_download | ||
import argparse | ||
from torch import multiprocessing | ||
import time | ||
import logging | ||
from marian_mt import * | ||
logger = logging.getLogger(__name__) | ||
|
||
logging.basicConfig( | ||
format='%(asctime)s : %(processName)s : %(levelname)s : %(message)s', | ||
level=logging.INFO) | ||
|
||
m2m100_lang = { | ||
('en', 'yo'): "Davlan/m2m100_418M-eng-yor-mt", | ||
('yo', 'en'): "Davlan/m2m100_418M-yor-eng-mt", | ||
('en', 'zu'): "masakhane/m2m100_418M-en-zu-mt", | ||
('zu', 'en'): "masakhane/m2m100_418M-zu-en-mt", | ||
('*', '*') : "facebook/m2m100_418M" | ||
} | ||
|
||
translation_pipelines= {} | ||
translation_tokenizers = {} | ||
|
||
def batchify(lst, n): | ||
"""Generate batches""" | ||
lst = list(lst) | ||
for i in range(0, len(lst), n): | ||
yield lst[i: i + n] | ||
|
||
def do_translations(text, src_lang='en', target_lang='hi', device="cpu", device_id=-1, batch_size=16, do_marian_mt=False): | ||
if type(text) is str: | ||
texts = [text] | ||
else: | ||
texts = text | ||
if not do_marian_mt: | ||
m2m_model_name = m2m100_lang.get((src_lang, target_lang), m2m100_lang[('*', '*')]) | ||
if m2m_model_name not in translation_tokenizers: | ||
m2m_tokenizer = translation_tokenizers[m2m_model_name] = M2M100Tokenizer.from_pretrained(m2m_model_name, model_max_length=512) | ||
else: | ||
m2m_tokenizer = translation_tokenizers[m2m_model_name] | ||
if True: #try: | ||
target_lang_bos_token = m2m_tokenizer.get_lang_id(target_lang) | ||
else: # except: | ||
do_marian_mt = True | ||
if not do_marian_mt: | ||
if m2m_model_name in translation_pipelines: | ||
m2m_model = translation_pipelines[m2m_model_name] | ||
else: | ||
if device == "cpu": | ||
translation_pipelines[m2m_model_name] = m2m_model = M2M100ForConditionalGeneration.from_pretrained(m2m_model_name).eval() | ||
translation_pipelines[m2m_model_name] = m2m_model = torch.quantization.quantize_dynamic(m2m_model, {torch.nn.Linear}, dtype=torch.qint8) | ||
else: | ||
translation_pipelines[m2m_model_name] = m2m_model = M2M100ForConditionalGeneration.from_pretrained(m2m_model_name).eval().half().to(device) | ||
translations = [] | ||
for src_text_list in batchify(texts, batch_size): | ||
try: | ||
batch = m2m_tokenizer(src_text_list, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) | ||
except: | ||
logger.info ("could not tokenize m2m batch. falling back to marian_mt") | ||
do_marian_mt = True | ||
break | ||
|
||
gen = m2m_model.generate(**batch, forced_bos_token_id=target_lang_bos_token, no_repeat_ngram_size=4, ) # | ||
outputs = m2m_tokenizer.batch_decode(gen, skip_special_tokens=True) | ||
translations.extend(outputs) | ||
if not do_marian_mt: | ||
return translations | ||
|
||
translations = [] | ||
model_name = marian_mt.get((src_lang, target_lang)) | ||
mt_pipeline = None | ||
if model_name is not None and model_name not in translation_pipelines: | ||
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length=512,truncation=True) | ||
if self.device == "cpu": | ||
model = MarianMTModel.from_pretrained(model_name).eval() | ||
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8) | ||
else: | ||
model = MarianMTModel.from_pretrained(model_name).eval().half().to(device) | ||
if self.device == 'cpu': | ||
mt_pipeline = pipeline("translation", model=model, tokenizer=tokenizer) | ||
else: | ||
mt_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, device=device_id) | ||
if mt_pipeline is None: | ||
raise RuntimeError("no translation pipeline") # we could do multi-step translation where there are no pairs | ||
translation_pipelines[model_name] = mt_pipeline | ||
|
||
for src_text_list in batchify(texts, batch_size): | ||
outputs = [t['translation_text'] for t in mt_pipeline(src_text_list, batch_size=batch_size, truncation=True, max_length=512)] | ||
translations.extend(outputs) | ||
if type(text) is str: | ||
return translations[0] | ||
return translations | ||
|
||
|