Skip to content

An efficient implementation of RNN-T Prefix Beam Search in C++/CUDA.

License

Notifications You must be signed in to change notification settings

jinggaizi/rnnt_decoder_cuda

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RNN-Transducer Prefix Beam Search

This repository provides an optimised implementation of prefix beam search for RNN-Tranducer loss function (as described in "Sequence Transduction with Recurrent Neural Networks" paper). This implementation takes ~100 milliseconds for a speech segment of ~5 seconds and beam size of 10 (beam size of 10 is adequate for production level error rates).

Sample Run

To execute a sample run of prefix beam search on your machine, execute the following commands:

  1. Clone this repository.
git clone https://github.com/iamjanvijay/rnnt_decoder_cuda.git;
  1. Clean the output folder.
rm rnnt_decoder_cuda/data/outputs/*;
  1. Make the deocder object file.
cd rnnt_decoder_cuda/decoder;
make clean;
make;
  1. Execute the decoder - decoded beams will be saved to data/output folder.
CUDA_VISIBLE_DEVICES=0 ./decoder ../data/inputs/metadata.txt 0 9 10 5001;
CUDA_VISIBLE_DEVICES=$GPU_ID$ ./decoder ../data/inputs/metadata.txt $index_of_first_file_to_read_from_metadata$ $index_of_last_file_to read_from_metadata$ $beam_size$ $vocabulary_size_excluding_blank$;

Contributing

Contributions are welcomed and greatly appreciated.

About

An efficient implementation of RNN-T Prefix Beam Search in C++/CUDA.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Cuda 42.6%
  • C++ 41.2%
  • Python 13.7%
  • Makefile 2.5%