Task-specific Scene Structure Representations(AAAI 2023 ORAL Presentation ACCEPTED!)
Jisu Shin, Seunghyun Shin and Hae-Gon Jeon
SSGNet. We propose a Scene Structure Guidance Network, SSGNet, a single general neural network architecture for extracting task-specific structural features of scenes..
- Python >= 3.6
- PyTorch >= 1.0
- NVIDIA GPU + CUDA cuDNN
- Install python requirements:
pip install -r requirements.txt
You should change SSGNet/options/train_options
--data-root : path to you nyu dataset
--save_dir : path to save your training result(ex. model weights, tensorboard)
etc.
cd ./SSGNet
python train.py
You should change SSGNET/options/test_options
--ssgnet-pretrained : path to your pretrained SSGNet
--save_result : path to save SSGNet output
python test.py
Download https://drive.google.com/file/d/1nimXk_7VV3TaiP3W3E49XgEc8nQftyRA/view?usp=drive_link and modify --ssgnet-pretrained path to test SSGNet
You should change Denoising/options/train_options
--dataset_root : path to your ImageNet dataset
--save_dir : path to save your training result(ex. model weights, tensorboard)
--ssg-pretrained : path of SSGNet pretrained weights
etc.
For RGB
cd ./Denoising
python train.py
For Gray_Scale
python train_gray.py
You should change Denoising/options/test_options
--ssgnet-pretrained : path to your pretrained Denoising Network
--save_dir : path to save denoised images
For BSDS300 Dataset
python test_BSDS300.py
For Kodak Dataset
python test_Kodak.py
For BSDS68 Dataset
python test_BSDS68.py
You should change scale parameter in main_GR & pretrained SSGNet parameter's path in model/network
python main_GR.py
You can download dataset that we used for training and test from below links
- NyuV2 : http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
- Middlebury : https://vision.middlebury.edu/stereo/data/
- Kodak : http://www.cs.albany.edu/~xypan/research/snr/Kodak.html
- BSDS : https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
Baseline network codes of Denoising and Depth Upsampling are from https://github.com/zhangyi-3/IDR and https://github.com/palmdong/MMSR, respectively.
Will be updated soon
If you have any question, please feel free to contact us via [email protected] or [email protected].