Skip to content

Commit

Permalink
Auto-generated documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
jzsmoreno committed Dec 28, 2024
1 parent ecebd51 commit 4c8994f
Show file tree
Hide file tree
Showing 15 changed files with 13,850 additions and 0 deletions.
244 changes: 244 additions & 0 deletions docs/graph/graph.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.5">
<title>likelihood.graph.graph API documentation</title>
<meta name="description" content="">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source > summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible;min-width:max-content}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin:1em 0}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
/* Collapse source docstrings */
setTimeout(() => {
[...document.querySelectorAll('.hljs.language-python > .hljs-string')]
.filter(el => el.innerHTML.length > 200 && ['"""', "'''"].includes(el.innerHTML.substring(0, 3)))
.forEach(el => {
let d = document.createElement('details');
d.classList.add('hljs-string');
d.innerHTML = '<summary>"""</summary>' + el.innerHTML.substring(3);
el.replaceWith(d);
});
}, 100);
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>likelihood.graph.graph</code></h1>
</header>
<section id="section-intro">
</section>
<section>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="likelihood.graph.graph.DynamicGraph"><code class="flex name class">
<span>class <span class="ident">DynamicGraph</span></span>
<span>(</span><span>df: pandas.core.frame.DataFrame, n_importances: int, **kwargs)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">class DynamicGraph(FeatureSelection):
&#34;&#34;&#34;A class to represent a dynamic graph&#34;&#34;&#34;

def __init__(self, df: DataFrame, n_importances: int, **kwargs):
self.G = Network(
notebook=True, cdn_resources=&#34;remote&#34;, directed=True
) # enable interactive visualization in Jupyter Notebooks
self.df = df
self.n_importances = n_importances
super().__init__(**kwargs)
self.labels: List[str] = []

def fit(self, **kwargs) -&gt; None:
&#34;&#34;&#34;Fit the model according to the given data and parameters.&#34;&#34;&#34;
self.get_digraph(self.df, self.n_importances)
# create a dictionary with the indexes and names of the dataframe
self.get_index = dict(zip(self.X.columns, range(len(self.X.columns))))
self._make_network()

def _make_network(self) -&gt; None:
&#34;&#34;&#34;Create nodes and edges of the network based on feature importance scores&#34;&#34;&#34;
self._add_nodes()
for i in range(len(self.all_features_imp_graph)):
node = self.all_features_imp_graph[i][0]
edges = self.all_features_imp_graph[i][1]

for label, weight in edges:
self.G.add_edge(self.get_index[node], self.get_index[label], weight=weight)

def _add_nodes(self) -&gt; None:
for i in range(len(self.all_features_imp_graph)):
node = self.all_features_imp_graph[i][0]
self.labels.append(node)
self.G.add_node(n_id=i, label=node)

def draw(self, name=&#34;graph.html&#34;, **kwargs) -&gt; None:
&#34;&#34;&#34;Display the network using HTML format&#34;&#34;&#34;
spring_length = kwargs[&#34;spring_length&#34;] if &#34;spring_length&#34; in kwargs else 500
node_distance = kwargs[&#34;node_distance&#34;] if &#34;node_distance&#34; in kwargs else 100
self.G.repulsion(node_distance=node_distance, spring_length=spring_length)
self.G.show_buttons(filter_=[&#34;physics&#34;])
self.G.show(name)

html_file_content = open(name, &#34;r&#34;).read()
display(HTML(html_file_content))

def pyvis_to_networkx(self):
nx_graph = nx.Graph()

# Adding nodes
nodes = [d[&#34;id&#34;] for d in self.G.nodes]
for node_dic in self.G.nodes:
id = node_dic[&#34;label&#34;]
del node_dic[&#34;label&#34;]
nx_graph.add_nodes_from([(id, node_dic)])
self.node_edge_dict = dict(zip(nodes, self.labels))
del nodes

# Adding edges
for edge in self.G.edges:
source, target = self.node_edge_dict[edge[&#34;from&#34;]], self.node_edge_dict[edge[&#34;to&#34;]]
del edge[&#34;from&#34;]
del edge[&#34;to&#34;]
nx_graph.add_edges_from([(source, target, edge)])

return nx_graph</code></pre>
</details>
<div class="desc"><p>A class to represent a dynamic graph</p>
<p>The initializer of the class. The initial parameter is a list of strings with variables to discard.</p></div>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="likelihood.tools.tools.FeatureSelection" href="../tools/tools.html#likelihood.tools.tools.FeatureSelection">FeatureSelection</a></li>
</ul>
<h3>Methods</h3>
<dl>
<dt id="likelihood.graph.graph.DynamicGraph.draw"><code class="name flex">
<span>def <span class="ident">draw</span></span>(<span>self, name='graph.html', **kwargs) ‑> None</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def draw(self, name=&#34;graph.html&#34;, **kwargs) -&gt; None:
&#34;&#34;&#34;Display the network using HTML format&#34;&#34;&#34;
spring_length = kwargs[&#34;spring_length&#34;] if &#34;spring_length&#34; in kwargs else 500
node_distance = kwargs[&#34;node_distance&#34;] if &#34;node_distance&#34; in kwargs else 100
self.G.repulsion(node_distance=node_distance, spring_length=spring_length)
self.G.show_buttons(filter_=[&#34;physics&#34;])
self.G.show(name)

html_file_content = open(name, &#34;r&#34;).read()
display(HTML(html_file_content))</code></pre>
</details>
<div class="desc"><p>Display the network using HTML format</p></div>
</dd>
<dt id="likelihood.graph.graph.DynamicGraph.fit"><code class="name flex">
<span>def <span class="ident">fit</span></span>(<span>self, **kwargs) ‑> None</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def fit(self, **kwargs) -&gt; None:
&#34;&#34;&#34;Fit the model according to the given data and parameters.&#34;&#34;&#34;
self.get_digraph(self.df, self.n_importances)
# create a dictionary with the indexes and names of the dataframe
self.get_index = dict(zip(self.X.columns, range(len(self.X.columns))))
self._make_network()</code></pre>
</details>
<div class="desc"><p>Fit the model according to the given data and parameters.</p></div>
</dd>
<dt id="likelihood.graph.graph.DynamicGraph.pyvis_to_networkx"><code class="name flex">
<span>def <span class="ident">pyvis_to_networkx</span></span>(<span>self)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def pyvis_to_networkx(self):
nx_graph = nx.Graph()

# Adding nodes
nodes = [d[&#34;id&#34;] for d in self.G.nodes]
for node_dic in self.G.nodes:
id = node_dic[&#34;label&#34;]
del node_dic[&#34;label&#34;]
nx_graph.add_nodes_from([(id, node_dic)])
self.node_edge_dict = dict(zip(nodes, self.labels))
del nodes

# Adding edges
for edge in self.G.edges:
source, target = self.node_edge_dict[edge[&#34;from&#34;]], self.node_edge_dict[edge[&#34;to&#34;]]
del edge[&#34;from&#34;]
del edge[&#34;to&#34;]
nx_graph.add_edges_from([(source, target, edge)])

return nx_graph</code></pre>
</details>
<div class="desc"></div>
</dd>
</dl>
<h3>Inherited members</h3>
<ul class="hlist">
<li><code><b><a title="likelihood.tools.tools.FeatureSelection" href="../tools/tools.html#likelihood.tools.tools.FeatureSelection">FeatureSelection</a></b></code>:
<ul class="hlist">
<li><code><a title="likelihood.tools.tools.FeatureSelection.get_digraph" href="../tools/tools.html#likelihood.tools.tools.FeatureSelection.get_digraph">get_digraph</a></code></li>
</ul>
</li>
</ul>
</dd>
</dl>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="likelihood.graph" href="index.html">likelihood.graph</a></code></li>
</ul>
</li>
<li><h3><a href="#header-classes">Classes</a></h3>
<ul>
<li>
<h4><code><a title="likelihood.graph.graph.DynamicGraph" href="#likelihood.graph.graph.DynamicGraph">DynamicGraph</a></code></h4>
<ul class="">
<li><code><a title="likelihood.graph.graph.DynamicGraph.draw" href="#likelihood.graph.graph.DynamicGraph.draw">draw</a></code></li>
<li><code><a title="likelihood.graph.graph.DynamicGraph.fit" href="#likelihood.graph.graph.DynamicGraph.fit">fit</a></code></li>
<li><code><a title="likelihood.graph.graph.DynamicGraph.pyvis_to_networkx" href="#likelihood.graph.graph.DynamicGraph.pyvis_to_networkx">pyvis_to_networkx</a></code></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.5</a>.</p>
</footer>
</body>
</html>
Loading

0 comments on commit 4c8994f

Please sign in to comment.