-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
13,850 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
<!doctype html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1"> | ||
<meta name="generator" content="pdoc3 0.11.5"> | ||
<title>likelihood.graph.graph API documentation</title> | ||
<meta name="description" content=""> | ||
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin> | ||
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin> | ||
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin> | ||
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source > summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible;min-width:max-content}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin:1em 0}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> | ||
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style> | ||
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> | ||
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script> | ||
<script>window.addEventListener('DOMContentLoaded', () => { | ||
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']}); | ||
hljs.highlightAll(); | ||
/* Collapse source docstrings */ | ||
setTimeout(() => { | ||
[...document.querySelectorAll('.hljs.language-python > .hljs-string')] | ||
.filter(el => el.innerHTML.length > 200 && ['"""', "'''"].includes(el.innerHTML.substring(0, 3))) | ||
.forEach(el => { | ||
let d = document.createElement('details'); | ||
d.classList.add('hljs-string'); | ||
d.innerHTML = '<summary>"""</summary>' + el.innerHTML.substring(3); | ||
el.replaceWith(d); | ||
}); | ||
}, 100); | ||
})</script> | ||
</head> | ||
<body> | ||
<main> | ||
<article id="content"> | ||
<header> | ||
<h1 class="title">Module <code>likelihood.graph.graph</code></h1> | ||
</header> | ||
<section id="section-intro"> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
<h2 class="section-title" id="header-classes">Classes</h2> | ||
<dl> | ||
<dt id="likelihood.graph.graph.DynamicGraph"><code class="flex name class"> | ||
<span>class <span class="ident">DynamicGraph</span></span> | ||
<span>(</span><span>df: pandas.core.frame.DataFrame, n_importances: int, **kwargs)</span> | ||
</code></dt> | ||
<dd> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">class DynamicGraph(FeatureSelection): | ||
"""A class to represent a dynamic graph""" | ||
|
||
def __init__(self, df: DataFrame, n_importances: int, **kwargs): | ||
self.G = Network( | ||
notebook=True, cdn_resources="remote", directed=True | ||
) # enable interactive visualization in Jupyter Notebooks | ||
self.df = df | ||
self.n_importances = n_importances | ||
super().__init__(**kwargs) | ||
self.labels: List[str] = [] | ||
|
||
def fit(self, **kwargs) -> None: | ||
"""Fit the model according to the given data and parameters.""" | ||
self.get_digraph(self.df, self.n_importances) | ||
# create a dictionary with the indexes and names of the dataframe | ||
self.get_index = dict(zip(self.X.columns, range(len(self.X.columns)))) | ||
self._make_network() | ||
|
||
def _make_network(self) -> None: | ||
"""Create nodes and edges of the network based on feature importance scores""" | ||
self._add_nodes() | ||
for i in range(len(self.all_features_imp_graph)): | ||
node = self.all_features_imp_graph[i][0] | ||
edges = self.all_features_imp_graph[i][1] | ||
|
||
for label, weight in edges: | ||
self.G.add_edge(self.get_index[node], self.get_index[label], weight=weight) | ||
|
||
def _add_nodes(self) -> None: | ||
for i in range(len(self.all_features_imp_graph)): | ||
node = self.all_features_imp_graph[i][0] | ||
self.labels.append(node) | ||
self.G.add_node(n_id=i, label=node) | ||
|
||
def draw(self, name="graph.html", **kwargs) -> None: | ||
"""Display the network using HTML format""" | ||
spring_length = kwargs["spring_length"] if "spring_length" in kwargs else 500 | ||
node_distance = kwargs["node_distance"] if "node_distance" in kwargs else 100 | ||
self.G.repulsion(node_distance=node_distance, spring_length=spring_length) | ||
self.G.show_buttons(filter_=["physics"]) | ||
self.G.show(name) | ||
|
||
html_file_content = open(name, "r").read() | ||
display(HTML(html_file_content)) | ||
|
||
def pyvis_to_networkx(self): | ||
nx_graph = nx.Graph() | ||
|
||
# Adding nodes | ||
nodes = [d["id"] for d in self.G.nodes] | ||
for node_dic in self.G.nodes: | ||
id = node_dic["label"] | ||
del node_dic["label"] | ||
nx_graph.add_nodes_from([(id, node_dic)]) | ||
self.node_edge_dict = dict(zip(nodes, self.labels)) | ||
del nodes | ||
|
||
# Adding edges | ||
for edge in self.G.edges: | ||
source, target = self.node_edge_dict[edge["from"]], self.node_edge_dict[edge["to"]] | ||
del edge["from"] | ||
del edge["to"] | ||
nx_graph.add_edges_from([(source, target, edge)]) | ||
|
||
return nx_graph</code></pre> | ||
</details> | ||
<div class="desc"><p>A class to represent a dynamic graph</p> | ||
<p>The initializer of the class. The initial parameter is a list of strings with variables to discard.</p></div> | ||
<h3>Ancestors</h3> | ||
<ul class="hlist"> | ||
<li><a title="likelihood.tools.tools.FeatureSelection" href="../tools/tools.html#likelihood.tools.tools.FeatureSelection">FeatureSelection</a></li> | ||
</ul> | ||
<h3>Methods</h3> | ||
<dl> | ||
<dt id="likelihood.graph.graph.DynamicGraph.draw"><code class="name flex"> | ||
<span>def <span class="ident">draw</span></span>(<span>self, name='graph.html', **kwargs) ‑> None</span> | ||
</code></dt> | ||
<dd> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">def draw(self, name="graph.html", **kwargs) -> None: | ||
"""Display the network using HTML format""" | ||
spring_length = kwargs["spring_length"] if "spring_length" in kwargs else 500 | ||
node_distance = kwargs["node_distance"] if "node_distance" in kwargs else 100 | ||
self.G.repulsion(node_distance=node_distance, spring_length=spring_length) | ||
self.G.show_buttons(filter_=["physics"]) | ||
self.G.show(name) | ||
|
||
html_file_content = open(name, "r").read() | ||
display(HTML(html_file_content))</code></pre> | ||
</details> | ||
<div class="desc"><p>Display the network using HTML format</p></div> | ||
</dd> | ||
<dt id="likelihood.graph.graph.DynamicGraph.fit"><code class="name flex"> | ||
<span>def <span class="ident">fit</span></span>(<span>self, **kwargs) ‑> None</span> | ||
</code></dt> | ||
<dd> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">def fit(self, **kwargs) -> None: | ||
"""Fit the model according to the given data and parameters.""" | ||
self.get_digraph(self.df, self.n_importances) | ||
# create a dictionary with the indexes and names of the dataframe | ||
self.get_index = dict(zip(self.X.columns, range(len(self.X.columns)))) | ||
self._make_network()</code></pre> | ||
</details> | ||
<div class="desc"><p>Fit the model according to the given data and parameters.</p></div> | ||
</dd> | ||
<dt id="likelihood.graph.graph.DynamicGraph.pyvis_to_networkx"><code class="name flex"> | ||
<span>def <span class="ident">pyvis_to_networkx</span></span>(<span>self)</span> | ||
</code></dt> | ||
<dd> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">def pyvis_to_networkx(self): | ||
nx_graph = nx.Graph() | ||
|
||
# Adding nodes | ||
nodes = [d["id"] for d in self.G.nodes] | ||
for node_dic in self.G.nodes: | ||
id = node_dic["label"] | ||
del node_dic["label"] | ||
nx_graph.add_nodes_from([(id, node_dic)]) | ||
self.node_edge_dict = dict(zip(nodes, self.labels)) | ||
del nodes | ||
|
||
# Adding edges | ||
for edge in self.G.edges: | ||
source, target = self.node_edge_dict[edge["from"]], self.node_edge_dict[edge["to"]] | ||
del edge["from"] | ||
del edge["to"] | ||
nx_graph.add_edges_from([(source, target, edge)]) | ||
|
||
return nx_graph</code></pre> | ||
</details> | ||
<div class="desc"></div> | ||
</dd> | ||
</dl> | ||
<h3>Inherited members</h3> | ||
<ul class="hlist"> | ||
<li><code><b><a title="likelihood.tools.tools.FeatureSelection" href="../tools/tools.html#likelihood.tools.tools.FeatureSelection">FeatureSelection</a></b></code>: | ||
<ul class="hlist"> | ||
<li><code><a title="likelihood.tools.tools.FeatureSelection.get_digraph" href="../tools/tools.html#likelihood.tools.tools.FeatureSelection.get_digraph">get_digraph</a></code></li> | ||
</ul> | ||
</li> | ||
</ul> | ||
</dd> | ||
</dl> | ||
</section> | ||
</article> | ||
<nav id="sidebar"> | ||
<div class="toc"> | ||
<ul></ul> | ||
</div> | ||
<ul id="index"> | ||
<li><h3>Super-module</h3> | ||
<ul> | ||
<li><code><a title="likelihood.graph" href="index.html">likelihood.graph</a></code></li> | ||
</ul> | ||
</li> | ||
<li><h3><a href="#header-classes">Classes</a></h3> | ||
<ul> | ||
<li> | ||
<h4><code><a title="likelihood.graph.graph.DynamicGraph" href="#likelihood.graph.graph.DynamicGraph">DynamicGraph</a></code></h4> | ||
<ul class=""> | ||
<li><code><a title="likelihood.graph.graph.DynamicGraph.draw" href="#likelihood.graph.graph.DynamicGraph.draw">draw</a></code></li> | ||
<li><code><a title="likelihood.graph.graph.DynamicGraph.fit" href="#likelihood.graph.graph.DynamicGraph.fit">fit</a></code></li> | ||
<li><code><a title="likelihood.graph.graph.DynamicGraph.pyvis_to_networkx" href="#likelihood.graph.graph.DynamicGraph.pyvis_to_networkx">pyvis_to_networkx</a></code></li> | ||
</ul> | ||
</li> | ||
</ul> | ||
</li> | ||
</ul> | ||
</nav> | ||
</main> | ||
<footer id="footer"> | ||
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.5</a>.</p> | ||
</footer> | ||
</body> | ||
</html> |
Oops, something went wrong.