-
Notifications
You must be signed in to change notification settings - Fork 477
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Support VITS VCTK models * Release v1.8.1
- Loading branch information
1 parent
d01682d
commit 9efe697
Showing
16 changed files
with
332 additions
and
31 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
tokens-ljs.txt | ||
tokens-vctk.txt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang) | ||
|
||
""" | ||
This script converts vits models trained using the VCTK dataset. | ||
Usage: | ||
(1) Download vits | ||
cd /Users/fangjun/open-source | ||
git clone https://github.com/jaywalnut310/vits | ||
(2) Download pre-trained models from | ||
https://huggingface.co/csukuangfj/vits-vctk/tree/main | ||
wget https://huggingface.co/csukuangfj/vits-vctk/resolve/main/pretrained_vctk.pth | ||
(3) Run this file | ||
./export-onnx-vctk.py \ | ||
--config ~/open-source//vits/configs/vctk_base.json \ | ||
--checkpoint ~/open-source/icefall-models/vits-vctk/pretrained_vctk.pth | ||
It will generate the following two files: | ||
$ ls -lh *.onnx | ||
-rw-r--r-- 1 fangjun staff 37M Oct 16 10:57 vits-vctk.int8.onnx | ||
-rw-r--r-- 1 fangjun staff 116M Oct 16 10:57 vits-vctk.onnx | ||
""" | ||
import sys | ||
|
||
# Please change this line to point to the vits directory. | ||
# You can download vits from | ||
# https://github.com/jaywalnut310/vits | ||
sys.path.insert(0, "/Users/fangjun/open-source/vits") # noqa | ||
|
||
import argparse | ||
from pathlib import Path | ||
from typing import Dict, Any | ||
|
||
import commons | ||
import onnx | ||
import torch | ||
import utils | ||
from models import SynthesizerTrn | ||
from onnxruntime.quantization import QuantType, quantize_dynamic | ||
from text import text_to_sequence | ||
from text.symbols import symbols | ||
from text.symbols import _punctuation | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config", | ||
type=str, | ||
required=True, | ||
help="""Path to vctk_base.json. | ||
You can find it at | ||
https://huggingface.co/csukuangfj/vits-vctk/resolve/main/vctk_base.json | ||
""", | ||
) | ||
|
||
parser.add_argument( | ||
"--checkpoint", | ||
type=str, | ||
required=True, | ||
help="""Path to the checkpoint file. | ||
You can find it at | ||
https://huggingface.co/csukuangfj/vits-vctk/resolve/main/pretrained_vctk.pth | ||
""", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
class OnnxModel(torch.nn.Module): | ||
def __init__(self, model: SynthesizerTrn): | ||
super().__init__() | ||
self.model = model | ||
|
||
def forward( | ||
self, | ||
x, | ||
x_lengths, | ||
noise_scale=1, | ||
length_scale=1, | ||
noise_scale_w=1.0, | ||
sid=0, | ||
max_len=None, | ||
): | ||
return self.model.infer( | ||
x=x, | ||
x_lengths=x_lengths, | ||
sid=sid, | ||
noise_scale=noise_scale, | ||
length_scale=length_scale, | ||
noise_scale_w=noise_scale_w, | ||
max_len=max_len, | ||
)[0] | ||
|
||
|
||
def get_text(text, hps): | ||
text_norm = text_to_sequence(text, hps.data.text_cleaners) | ||
if hps.data.add_blank: | ||
text_norm = commons.intersperse(text_norm, 0) | ||
text_norm = torch.LongTensor(text_norm) | ||
return text_norm | ||
|
||
|
||
def check_args(args): | ||
assert Path(args.config).is_file(), args.config | ||
assert Path(args.checkpoint).is_file(), args.checkpoint | ||
|
||
|
||
def add_meta_data(filename: str, meta_data: Dict[str, Any]): | ||
"""Add meta data to an ONNX model. It is changed in-place. | ||
Args: | ||
filename: | ||
Filename of the ONNX model to be changed. | ||
meta_data: | ||
Key-value pairs. | ||
""" | ||
model = onnx.load(filename) | ||
for key, value in meta_data.items(): | ||
meta = model.metadata_props.add() | ||
meta.key = key | ||
meta.value = str(value) | ||
|
||
onnx.save(model, filename) | ||
|
||
|
||
def generate_tokens(): | ||
with open("tokens-vctk.txt", "w", encoding="utf-8") as f: | ||
for i, s in enumerate(symbols): | ||
f.write(f"{s} {i}\n") | ||
print("Generated tokens-vctk.txt") | ||
|
||
|
||
@torch.no_grad() | ||
def main(): | ||
args = get_args() | ||
check_args(args) | ||
|
||
generate_tokens() | ||
|
||
hps = utils.get_hparams_from_file(args.config) | ||
|
||
net_g = SynthesizerTrn( | ||
len(symbols), | ||
hps.data.filter_length // 2 + 1, | ||
hps.train.segment_size // hps.data.hop_length, | ||
n_speakers=hps.data.n_speakers, | ||
**hps.model, | ||
) | ||
_ = net_g.eval() | ||
|
||
_ = utils.load_checkpoint(args.checkpoint, net_g, None) | ||
|
||
x = get_text("Liliana is the most beautiful assistant", hps) | ||
x = x.unsqueeze(0) | ||
|
||
x_length = torch.tensor([x.shape[1]], dtype=torch.int64) | ||
noise_scale = torch.tensor([1], dtype=torch.float32) | ||
length_scale = torch.tensor([1], dtype=torch.float32) | ||
noise_scale_w = torch.tensor([1], dtype=torch.float32) | ||
sid = torch.tensor([0], dtype=torch.int64) | ||
|
||
model = OnnxModel(net_g) | ||
|
||
opset_version = 13 | ||
|
||
filename = "vits-vctk.onnx" | ||
|
||
torch.onnx.export( | ||
model, | ||
(x, x_length, noise_scale, length_scale, noise_scale_w, sid), | ||
filename, | ||
opset_version=opset_version, | ||
input_names=[ | ||
"x", | ||
"x_length", | ||
"noise_scale", | ||
"length_scale", | ||
"noise_scale_w", | ||
"sid", | ||
], | ||
output_names=["y"], | ||
dynamic_axes={ | ||
"x": {0: "N", 1: "L"}, # n_audio is also known as batch_size | ||
"x_length": {0: "N"}, | ||
"y": {0: "N", 2: "L"}, | ||
}, | ||
) | ||
meta_data = { | ||
"model_type": "vits", | ||
"comment": "vctk", | ||
"language": "English", | ||
"add_blank": int(hps.data.add_blank), | ||
"n_speakers": int(hps.data.n_speakers), | ||
"sample_rate": hps.data.sampling_rate, | ||
"punctuation": " ".join(list(_punctuation)), | ||
} | ||
print("meta_data", meta_data) | ||
add_meta_data(filename=filename, meta_data=meta_data) | ||
|
||
print("Generate int8 quantization models") | ||
|
||
filename_int8 = "vits-vctk.int8.onnx" | ||
quantize_dynamic( | ||
model_input=filename, | ||
model_output=filename_int8, | ||
weight_type=QuantType.QUInt8, | ||
) | ||
|
||
print(f"Saved to {filename} and {filename_int8}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.