Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(datasets): Added the Experimental SafetensorsDataset #898

Merged
Merged
Show file tree
Hide file tree
Changes from 21 commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
26f714d
added the skeleton for the Safetensors experimental dataset
MinuraPunchihewa Oct 17, 2024
c2a980e
implemented the save() and load() funcs
MinuraPunchihewa Oct 17, 2024
58a258d
updated the default backend
MinuraPunchihewa Oct 18, 2024
3723b02
implemented the describe() and exists() funcs
MinuraPunchihewa Oct 18, 2024
843e815
imported the dataset to main pkg
MinuraPunchihewa Oct 18, 2024
9a54930
fixed how data is passed to load()
MinuraPunchihewa Oct 18, 2024
8a5d522
fixed save() to access the file path
MinuraPunchihewa Oct 18, 2024
1bd4117
added a release() func
MinuraPunchihewa Oct 18, 2024
eba18df
added the docstrings for the dataset
MinuraPunchihewa Oct 19, 2024
98bb719
fixed lint issues
MinuraPunchihewa Oct 19, 2024
5d0e347
added unit tests
MinuraPunchihewa Oct 20, 2024
58c1ac7
added a few more unit tests
MinuraPunchihewa Oct 20, 2024
3350161
fixed broken unit test
MinuraPunchihewa Oct 20, 2024
da6c32a
Merge branch 'main' into feature/safetensors_dataset
MinuraPunchihewa Oct 20, 2024
aa6dd9c
fixed lint issues
MinuraPunchihewa Oct 20, 2024
697f34f
fixed use of insecure temp files
MinuraPunchihewa Oct 20, 2024
4c27e73
added the dataset to the documentation
MinuraPunchihewa Oct 21, 2024
7922ed8
listed the dependencies for the dataset
MinuraPunchihewa Oct 21, 2024
3c59813
fixed typo in dataset reference
MinuraPunchihewa Oct 21, 2024
8602809
Merge branch 'main' into feature/safetensors_dataset
MinuraPunchihewa Oct 30, 2024
f634a99
Merge branch 'main' into feature/safetensors_dataset
DimedS Nov 12, 2024
471b5a6
updated the release notes
MinuraPunchihewa Nov 12, 2024
36e8e88
updated the docstring for the class
MinuraPunchihewa Nov 27, 2024
b3ba2d9
changed the default backend to numpy
MinuraPunchihewa Nov 27, 2024
cf06f15
added numpy to the list of dependencies
MinuraPunchihewa Nov 27, 2024
4b03df0
fixed the assert statement in the docstring
MinuraPunchihewa Nov 27, 2024
3e9709b
fixed syntax error in example in docstring
MinuraPunchihewa Nov 27, 2024
4e1c23b
Merge branch 'main' into feature/safetensors_dataset
MinuraPunchihewa Nov 27, 2024
04697c1
updated the examples in the docs to use a numpy backend
MinuraPunchihewa Nov 28, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -20,4 +20,5 @@ kedro_datasets_experimental
prophet.ProphetModelDataset
pytorch.PyTorchDataset
rioxarray.GeoTIFFDataset
safetensors.SafetensorsDataset
video.VideoDataset
11 changes: 11 additions & 0 deletions kedro-datasets/kedro_datasets_experimental/safetensors/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
"""``AbstractDataset`` implementation to load/save tensors using the SafeTensors library."""

from typing import Any

import lazy_loader as lazy

SafetensorsDataset: Any

__getattr__, __dir__, __all__ = lazy.attach(
__name__, submod_attrs={"safetensors_dataset": ["SafetensorsDataset"]}
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
from __future__ import annotations

import importlib
from copy import deepcopy
from pathlib import PurePosixPath
from typing import Any

import fsspec
from kedro.io.core import (
AbstractVersionedDataset,
DatasetError,
Version,
get_filepath_str,
get_protocol_and_path,
)


class SafetensorsDataset(AbstractVersionedDataset[Any, Any]):
"""``SafetensorsDataset`` loads/saves data from/to a Safetensors file using an underlying
filesystem (e.g.: local, S3, GCS). The underlying functionality is supported by
the specified backend library passed in (defaults to the ``torch`` library), so it
supports all allowed options for loading and Safetensors files.

Example usage for the
`YAML API <https://docs.kedro.org/en/stable/data/\
data_catalog_yaml_examples.html>`_:

.. code-block:: yaml

test_model: # simple example without compression
type: safetensors.SafetensorsDataset
filepath: data/07_model_output/test_model.safetensors
backend: torch

Example usage for the
`Python API <https://docs.kedro.org/en/stable/data/\
advanced_data_catalog_usage.html>`_:

.. code-block:: pycon

>>> from kedro_datasets.safetensors import SafetensorsDataset
>>> import torch
>>>
>>> data = {"embeddings": torch.zeros((10, 100)}
>>> dataset = SafetensorsDataset(
... filepath="test.safetensors",
... backend="torch"
... )
>>> dataset.save(data)
>>> reloaded = dataset.load()
>>> assert data.equals(reloaded)
MinuraPunchihewa marked this conversation as resolved.
Show resolved Hide resolved
"""

DEFAULT_LOAD_ARGS: dict[str, Any] = {}
DEFAULT_SAVE_ARGS: dict[str, Any] = {}
DEFAULT_FS_ARGS: dict[str, Any] = {"open_args_save": {"mode": "wb"}}

def __init__( # noqa: PLR0913
self,
*,
filepath: str,
backend: str = "torch",
astrojuanlu marked this conversation as resolved.
Show resolved Hide resolved
version: Version | None = None,
credentials: dict[str, Any] | None = None,
fs_args: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> None:
"""Creates a new instance of ``SafetensorsDataset`` pointing to a concrete Safetensors
file on a specific filesystem. ``SafetensorsDataset`` supports custom backends to
serialise/deserialise objects.

The following backends are supported:
* `torch`
* `tensorflow`
* `paddle`
* `flax`
* `numpy`

Args:
filepath: Filepath in POSIX format to a Safetensors file prefixed with a protocol like
`s3://`. If prefix is not provided, `file` protocol (local filesystem) will be used.
The prefix should be any protocol supported by ``fsspec``.
Note: `http(s)` doesn't support versioning.
backend: The backend library to use for serialising/deserialising objects.
The default backend is 'torch'.
version: If specified, should be an instance of
``kedro.io.core.Version``. If its ``load`` attribute is
None, the latest version will be loaded. If its ``save``
attribute is None, save version will be autogenerated.
credentials: Credentials required to get access to the underlying filesystem.
E.g. for ``GCSFileSystem`` it should look like `{"token": None}`.
fs_args: Extra arguments to pass into underlying filesystem class constructor
(e.g. `{"project": "my-project"}` for ``GCSFileSystem``), as well as
to pass to the filesystem's `open` method through nested keys
`open_args_load` and `open_args_save`.
Here you can find all available arguments for `open`:
https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.open
All defaults are preserved, except `mode`, which is set to `wb` when saving.
metadata: Any arbitrary metadata.
This is ignored by Kedro, but may be consumed by users or external plugins.

Raises:
ImportError: If the ``backend`` module could not be imported.
"""
try:
importlib.import_module(f"safetensors.{backend}")
except ImportError as exc:
raise ImportError(
f"Selected backend '{backend}' could not be imported. "
"Make sure it is installed and importable."
) from exc

_fs_args = deepcopy(fs_args) or {}
_fs_open_args_load = _fs_args.pop("open_args_load", {})
_fs_open_args_save = _fs_args.pop("open_args_save", {})
_credentials = deepcopy(credentials) or {}

protocol, path = get_protocol_and_path(filepath, version)
if protocol == "file":
_fs_args.setdefault("auto_mkdir", True)

self._protocol = protocol
self._fs = fsspec.filesystem(self._protocol, **_credentials, **_fs_args)

self.metadata = metadata

super().__init__(
filepath=PurePosixPath(path),
version=version,
exists_function=self._fs.exists,
glob_function=self._fs.glob,
)

self._backend = backend

self._fs_open_args_load = {
**self.DEFAULT_FS_ARGS.get("open_args_load", {}),
**(_fs_open_args_load or {}),
}
self._fs_open_args_save = {
**self.DEFAULT_FS_ARGS.get("open_args_save", {}),
**(_fs_open_args_save or {}),
}

def load(self) -> Any:
load_path = get_filepath_str(self._get_load_path(), self._protocol)

with self._fs.open(load_path, **self._fs_open_args_load) as fs_file:
imported_backend = importlib.import_module(f"safetensors.{self._backend}")
return imported_backend.load(fs_file.read())

def save(self, data: Any) -> None:
save_path = get_filepath_str(self._get_save_path(), self._protocol)

with self._fs.open(save_path, **self._fs_open_args_save) as fs_file:
try:
imported_backend = importlib.import_module(f"safetensors.{self._backend}")
imported_backend.save_file(data, fs_file.name)
except Exception as exc:
raise DatasetError(
f"{data.__class__} was not serialised due to: {exc}"
) from exc

self._invalidate_cache()

def _describe(self) -> dict[str, Any]:
return {
"filepath": self._filepath,
"backend": self._backend,
"protocol": self._protocol,
"version": self._version,
}

def _exists(self) -> bool:
try:
load_path = get_filepath_str(self._get_load_path(), self._protocol)
except DatasetError:
return False

return self._fs.exists(load_path)

def _release(self) -> None:
super()._release()
self._invalidate_cache()

def _invalidate_cache(self) -> None:
"""Invalidate underlying filesystem caches."""
filepath = get_filepath_str(self._filepath, self._protocol)
self._fs.invalidate_cache(filepath)
Empty file.
Loading