-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8ef29be
commit cb0d7d2
Showing
2 changed files
with
123 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
#!/usr/bin/env python3 | ||
""" | ||
Train and recommend with a model for basic timing info. | ||
Usage: | ||
test-algo.py [options] [-d DATA] MODEL USER... | ||
test-algo.py [options] [-d DATA] MODEL --random-users=N | ||
Options: | ||
-v, --verbose | ||
Enable verbose logging. | ||
-d DATA, --dataset=DATA | ||
Train with DATA [default: ml-latest-small]. | ||
-o FILE, --output=FILE | ||
Write recommendations to FILE. | ||
-r N, --random-users=N | ||
Recommend for N random users. | ||
-N N, --num-recs=N | ||
Generate N recommendations per user [default: 10]. | ||
""" | ||
|
||
import logging | ||
import pickle | ||
import sys | ||
|
||
import seedbank | ||
from docopt import docopt | ||
|
||
from lenskit import batch | ||
from lenskit.algorithms import Recommender | ||
from lenskit.algorithms.item_knn import ItemItem | ||
from lenskit.datasets import MovieLens | ||
|
||
_log = logging.getLogger("test-algo") | ||
|
||
|
||
def main(args): | ||
level = logging.DEBUG if args["--verbose"] else logging.INFO | ||
logging.basicConfig(stream=sys.stderr, level=level) | ||
|
||
data = args["--dataset"] | ||
_log.info("loading data %s", data) | ||
ml = MovieLens(f"data/{data}") | ||
|
||
_log.info("reading model from %s", args["MODEL"]) | ||
with open(args["MODEL"], "rb") as f: | ||
algo = pickle.load(f) | ||
|
||
rng = seedbank.numpy_rng() | ||
|
||
if args["--random-users"]: | ||
n = int(args["--random-users"]) | ||
_log.info("selecting %d random users", n) | ||
users = rng.choice(ml.ratings["user"].unique(), n) | ||
else: | ||
_log.info("using %d specified users", len(args["USER"])) | ||
users = [int(u) for u in args["USER"]] | ||
|
||
recs = batch.recommend(algo, users, int(args["--num-recs"]), n_jobs=1) | ||
_log.info("recommendation complete") | ||
|
||
outf = args["--output"] | ||
if outf: | ||
_log.info("saving %d recs to %s", len(recs), outf) | ||
recs.to_csv(outf, index=False) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = docopt(__doc__) | ||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
#!/usr/bin/env python3 | ||
""" | ||
Train a recommendation model and save it to disk. | ||
Usage: | ||
test-algo.py [options] [-d DATA] --item-item FILE | ||
Options: | ||
-v, --verbose | ||
Enable verbose logging. | ||
-d DATA, --dataset=DATA | ||
Train with DATA [default: ml-latest-small]. | ||
""" | ||
|
||
import logging | ||
import pickle | ||
import sys | ||
|
||
from docopt import docopt | ||
|
||
from lenskit.algorithms import Recommender | ||
from lenskit.algorithms.item_knn import ItemItem | ||
from lenskit.datasets import MovieLens | ||
|
||
_log = logging.getLogger("train-model") | ||
|
||
|
||
def main(args): | ||
logging.basicConfig(stream=sys.stderr, level=logging.INFO) | ||
data = args["--dataset"] | ||
_log.info("loading data %s", data) | ||
ml = MovieLens(f"data/{data}") | ||
|
||
if args["--item-item"]: | ||
algo = ItemItem(20) | ||
else: | ||
_log.error("no algorithm specified") | ||
sys.exit(2) | ||
|
||
algo = Recommender.adapt(algo) | ||
_log.info("training algorithm") | ||
algo.fit(ml.ratings) | ||
_log.info("training complete") | ||
|
||
file = args["FILE"] | ||
_log.info("saving to %s", file) | ||
with open(file, "wb") as f: | ||
pickle.dump(algo, f, 5) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = docopt(__doc__) | ||
main(args) |