Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DM-34703: Assess new results from QuickFrameMeasurementTask #28

Merged
merged 3 commits into from
Dec 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added data/qfm_baseline_assessment.parq
Binary file not shown.
248 changes: 248 additions & 0 deletions python/lsst/summit/extras/assessQFM.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
# This file is part of summit_extras.
#
# Developed for the LSST Data Management System.
# This product includes software developed by the LSST Project
# (https://www.lsst.org).
# See the COPYRIGHT file at the top-level directory of this distribution
# for details of code ownership.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.

import pandas as pd
import time
import numpy as np
from multiprocessing import Pool
import argparse

from lsst.pipe.tasks.quickFrameMeasurement import QuickFrameMeasurementTask, QuickFrameMeasurementTaskConfig
import lsst.summit.utils.butlerUtils as butlerUtils


class AssessQFM():
"""Test a new version of quickFrameMeasurementTask against the baseline
results.

Parameters
----------
butler : `lsst.daf.butler.Butler`
Butler repository with the relevant exposures.
dataProduct : `str`, optional
Data product on which to run quickFrameMeasurement.
dataset : `str`, optional
File holding a table of vetted quickFrameMeasurement results.
successCut : `float`, optional
Distance in pixels between the baseline and new measurement centroids
for already successful fits in order to consider the new fit equally
successful.
nearSuccessCut : `float`, optional
Distance in pixels between the baseline and new measurement centroids
for fits that were close to correct in order to consider the new fit
approximately as successful.
donutCut : `float`, optional
Distance in pixels between the baseline and new measurement centroids
for fits of donut images to consider the new fit approximately as
successful.
logLevel : `int`, optional
Level of QuickFrameMeasurementTask log messages. Setting to 50 means
that only CRITICAL messages will be printed.
"""

def __init__(self, butler, dataProduct='quickLookExp',
dataset='data/qfm_baseline_assessment.parq',
successCut=2, nearSuccessCut=10, donutCut=10, logLevel=50):

self.butler = butler

qfmTaskConfig = QuickFrameMeasurementTaskConfig()
self.qfmTask = QuickFrameMeasurementTask(config=qfmTaskConfig)
self.qfmTask.log.setLevel(logLevel)

self.testData = pd.read_parquet(dataset)
self.dataProduct = dataProduct
self.dataIds = [{'day_obs': row['day_obs'], 'seq_num': row['sequence_number'],
'detector': row['detector']} for i, row in self.testData.iterrows()]

self.cuts = {'G': successCut,
'QG': nearSuccessCut,
'DG': donutCut}

self.resultKey = {'G': "Success", # Centroid is centered on the brightest star
'QG': "Near success", # Centroid is near the center of the brightest star
'BI': "Bad image", # A tracking issue, for example. Don't expect good fit
'WF': "Wrong star", # Centroid is not on the brightest star
'OF': "Other failure", # Other source of failure
'FG': "Good failure", # Calibration image, so failure is expected
'FP': "False positive", # No stars, so fit should have failed
'DG': "Success (Donut)", # Donut image, centroid is somewhere on donut
'DF': "Failure (Donut)", # Donut image, fit failed
'SG': "Success (Giant donut)", # Giant donut, centroid is somewhere on donut
'SF': "Failure (Giant donut)", # Giant donut, fit failed
'U': "Ambiguous", # Centroid is on a star, but unclear whether it is the brightest
}

def run(self, nSamples=None, nProcesses=1, outputFile=None):
"""Run quickFrameMeasurement on a sample dataset, save the new results,
and compare them with the baseline, vetted by-eye results.

Parameters
----------
nSamples : `int`
Number of exposures to check. If nSamples is greater than the
number of exposures in the vetted dataset, will check all.
nProcesses : `int`
Number of threads to use. If greater than one, multithreading will
be used.
outputFile : `str`
Name of the output file.
"""

if nSamples is not None:
if nSamples > len(self.dataIds):
nSamples = len(self.dataIds)
samples = np.random.choice(range(len(self.dataIds)), size=nSamples, replace=False)
testSubset = self.testData.iloc[samples]
else:
testSubset = self.testData

if nProcesses > 1:
with Pool(processes=nProcesses) as p:
df_split = np.array_split(testSubset, nProcesses)
pool_process = p.map(self._runQFM, df_split)
qfmResults = pd.concat(pool_process)
else:
qfmResults = self._runQFM(testSubset)

if outputFile:
qfmResults.to_parquet(outputFile)

self.compareToBaseline(qfmResults)

def _runQFM(self, testset):
"""Run quickFrameMeasurement on a subset of the dataset.

Parameters
----------
testset : `pandas.DataFrame`
Table of vetted exposures.

Returns
-------
qfmResults : `pandas.DataFrame`
Table of results from new quickFrameMeasurement run.
"""

qfmResults = pd.DataFrame(index=testset.index, columns=self.testData.columns)
for i, row in testset.iterrows():
dataId = {'day_obs': row['day_obs'], 'seq_num': row['sequence_number'],
'detector': row['detector']}

exp = self.butler.get(self.dataProduct, dataId=dataId)
qfmRes = qfmResults.loc[i]

t1 = time.time()
result = self.qfmTask.run(exp)
t2 = time.time()
qfmRes['runtime'] = t2 - t1

if result.success:
pixCoord = result.brightestObjCentroid
qfmRes['centroid_x'] = pixCoord[0]
qfmRes['centroid_y'] = pixCoord[1]
qfmRes['finalTag'] = 'P'

else:
qfmRes['finalTag'] = 'F'
return qfmResults

def compareToBaseline(self, comparisonData):
"""Compare a table of quickFrameMeasurement results with the
baseline vetted data, and print output of the comparison.

Parameters
----------
comparisonData : `pandas.DataFrame`
Table to compare with baseline results.
"""
baselineData = self.testData.loc[comparisonData.index]

# First the cases that succeeded in the baseline results:
for key in ['G', 'QG', 'WF', 'DG', 'SG', 'FP', 'U']:
key_inds = baselineData['finalTag'] == key
if key_inds.sum() == 0:
continue
origResults = baselineData[key_inds]
newResults = comparisonData[key_inds]

stillSucceeds = (newResults['finalTag'] == 'P').sum()
print(f"Results for '{self.resultKey[key]}' cases:")
print(f" {stillSucceeds} out of {len(origResults)} still succeed")

centroid_distances = ((origResults['centroid_x'] - newResults['centroid_x'])**2 +
(origResults['centroid_y'] - newResults['centroid_y'])**2)**0.5

if key in ['G', 'QG', 'DG']:
inCut = centroid_distances < self.cuts[key]
print(f" {inCut.sum()} out of {len(origResults)} centroids are within {self.cuts[key]} "
"pixels of the baseline centroid fit.")
if key in ['U', 'WF', 'QG']:
print(" Individual exposures:")
print(f" {'day_obs':<10}{'sequence_number':<17}{'old centroid':<17}{'new centroid':<17}")
for i, res in origResults.iterrows():
newRes = newResults.loc[i]
old_centroid = f"({res['centroid_x']:.1f}, {res['centroid_y']:.1f})"
new_centroid = f"({newRes['centroid_x']:.1f}, {newRes['centroid_y']:.1f})"
print(f" {res['day_obs']:<10}{res['sequence_number']:<17}{old_centroid:<17}"
f"{new_centroid:<17}")

# Next the cases that failed in the past:
for key in ['FG', 'DF', 'SF', 'OF']:
key_inds = baselineData['finalTag'] == key
if key_inds.sum() == 0:
continue
origResults = baselineData[key_inds]
newResults = comparisonData[key_inds]

stillFails = (newResults['finalTag'] == 'F').sum()
print(f"Results for '{self.resultKey[key]}' cases:")
print(f" {stillFails} out of {len(origResults)} still fail")

print("Runtime comparison:")
print(f" Baseline: {np.mean(baselineData['runtime']):.2f}+/-"
f"{np.std(baselineData['runtime']):.2f} seconds")
print(f" Current: {np.mean(comparisonData['runtime']):.2f}+/-"
f"{np.std(comparisonData['runtime']):.2f} seconds")


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--embargo", dest="embargo", action=argparse.BooleanOptionalAction, default=True,
help="Whether to use embargo butler")
parser.add_argument("--nPool", dest="nPool", default=1, type=int,
help="Number of threads to use in multiprocessing")
parser.add_argument("--nSamples", dest="nSamples", default=None, type=int,
help="Number of sample exposures to use in assessment (default is all)")
parser.add_argument("-o", "--output-file", dest="outputFile", default="newQFMresults.parq",
help="Name of output file for new quickFrameMeasurement results")
args = parser.parse_args()

butler = butlerUtils.makeDefaultLatissButler(embargo=args.embargo)
assess = AssessQFM(butler)
nSamples = args.nSamples

t0 = time.time()
assess.run(nSamples=nSamples, nProcesses=args.nPool, outputFile=args.outputFile)
t1 = time.time()
if nSamples is None:
nSamples = assess.testData.shape[0]
print(f'Total time for {nSamples} samples and {args.nPool} cores: {(t1 - t0):.2f} seconds')
Loading