We define function spaces
For instance, we call
Lp(p,f)
to define the standard
We build the [Sobolev inequality] (https://en.wikipedia.org/wiki/Sobolev_inequality) for the. Here we need to input our function, which will output all possible embedding spaces as a common rule. We know that they are in a linear relation. So we pick 10 possible pairs where each pair are rational numbers.
For
Sobolev_Embed_auto(k,p,n,f)
to get a list of embedded spaces.
Example: For
Sobolev_Embed_auto(2,2,1,f**2)
And we have
$$ \left[ \left \| f^{2} \right \|{C^{0,\frac{3}{2}}}, \ \left \| f^{2} \right \|{C^{\frac{1}{6},\frac{4}{3}}}, \ \left \| f^{2} \right \|{C^{\frac{1}{3},\frac{7}{6}}}, \ \left \| f^{2} \right \|{C^{\frac{1}{2},1}}, \ \left \| f^{2} \right \|{C^{\frac{2}{3},\frac{5}{6}}}, \ \left \| f^{2} \right \|{C^{\frac{5}{6},\frac{2}{3}}}, \ \left \| f^{2} \right \|{C^{1,\frac{1}{2}}}, \ \left \| f^{2} \right \|{C^{\frac{7}{6},\frac{1}{3}}}, \ \left \| f^{2} \right \|{C^{\frac{4}{3},\frac{1}{6}}}, \ \left \| f^{2} \right \|{C^{\frac{3}{2},0}}\right] $$
For $f \in W^{2,2}(\mathbb(\R)^4)
Sobolev_Embed_auto(2,2,4,f)
We have
$$ \left[ \left \| f \right \|{W^{\frac{1}{25},100}}, \ \left \| f \right \|{W^{\frac{25}{97},\frac{450}{29}}}, \ \left \| f \right \|{W^{\frac{39}{82},\frac{757}{90}}}, \ \left \| f \right \|{W^{\frac{52}{75},\frac{75}{13}}}, \ \left \| f \right \|{W^{\frac{41}{45},\frac{180}{41}}}, \ \left \| f \right \|{W^{\frac{35}{31},\frac{287}{81}}}, \ \left \| f \right \|{W^{\frac{101}{75},\frac{199}{67}}}, \ \left \| f \right \|{W^{\frac{97}{62},\frac{225}{88}}}, \ \left \| f \right \|{W^{\frac{139}{78},\frac{101}{45}}}, \ \left \| f \right \|{W^{2,2}}\right] $$
We build the Bony's Paraproduct decomposition. We include the high-high, low-high, and low-high paraproduct. Moreover, we also have the helpful operator
For instance, if we want to calculate the paraproduct of
we can simply call:
Paraproduct(nabla*f,lap*g)
The output will be in latex as the following: