Skip to content

Efficient vision foundation models for high-resolution generation and perception.

License

Notifications You must be signed in to change notification settings

mit-han-lab/efficientvit

Repository files navigation

Efficient Vision Foundation Models for High-Resolution Generation and Perception

PWC

News

  • (🔥 New) [2025/01/24] We released DC-AE-SANA-1.1: doc.
  • (🔥 New) [2025/01/23] DC-AE and SANA are accepted by ICLR 2025.
  • (🔥 New) [2025/01/14] We released DC-AE+USiT models: model, training. Using the default training settings and sampling strategy, DC-AE+USiT-2B achieves 1.72 FID on ImageNet 512x512, surpassing the SOTA diffusion model EDM2-XXL and SOTA auto-regressive image generative models (MAGVIT-v2 and MAR-L).

Content

[ICLR 2025] Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models [paper] [readme]

Deep Compression Autoencoder (DC-AE) is a new family of high-spatial compression autoencoders with a spatial compression ratio of up to 128 while maintaining reconstruction quality. It accelerates all latent diffusion models regardless of the diffusion model architecture.

Demo

demo

Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders.

demo

Figure 2: DC-AE speeds up latent diffusion models.

Figure 3: DC-AE enables efficient text-to-image generation on the laptop: SANA.

[CVPR 2024 eLVM Workshop] EfficientViT-SAM: Accelerated Segment Anything Model Without Accuracy Loss [paper] [online demo] [readme]

EfficientViT-SAM is a new family of accelerated segment anything models by replacing SAM's heavy image encoder with EfficientViT. It delivers a 48.9x measured TensorRT speedup on A100 GPU over SAM-ViT-H without sacrificing accuracy.

[ICCV 2023] EfficientViT-Classification [paper] [readme]

Efficient image classification models with EfficientViT backbones.

[ICCV 2023] EfficientViT-Segmentation [paper] [readme]

Efficient semantic segmantation models with EfficientViT backbones.

demo

EfficientViT-GazeSAM [readme]

Gaze-prompted image segmentation models capable of running in real time with TensorRT on an NVIDIA RTX 4070.

GazeSAM demo

Getting Started

conda create -n efficientvit python=3.10
conda activate efficientvit
pip install -U -r requirements.txt

Third-Party Implementation/Integration

Contact

Han Cai

Reference

If EfficientViT or EfficientViT-SAM or DC-AE is useful or relevant to your research, please kindly recognize our contributions by citing our paper:

@inproceedings{cai2023efficientvit,
  title={Efficientvit: Lightweight multi-scale attention for high-resolution dense prediction},
  author={Cai, Han and Li, Junyan and Hu, Muyan and Gan, Chuang and Han, Song},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={17302--17313},
  year={2023}
}
@article{zhang2024efficientvit,
  title={EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss},
  author={Zhang, Zhuoyang and Cai, Han and Han, Song},
  journal={arXiv preprint arXiv:2402.05008},
  year={2024}
}
@article{chen2024deep,
  title={Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models},
  author={Chen, Junyu and Cai, Han and Chen, Junsong and Xie, Enze and Yang, Shang and Tang, Haotian and Li, Muyang and Lu, Yao and Han, Song},
  journal={arXiv preprint arXiv:2410.10733},
  year={2024}
}