Skip to content

mna12478/Variational-Autoencoder

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

##Variational Auto-encoder

This is an improved implementation of the paper Stochastic Gradient VB and the Variational Auto-Encoder by D. Kingma and Prof. Dr. M. Welling. This code uses ReLUs and the adam optimizer, instead of sigmoids and adagrad. These changes make the network converge much faster.

In my other repository the implementation is in Torch7 (lua), this version is based on Theano (Python). To run the MNIST experiment:

python run.py

Setting the continuous boolean to true will make the script run the freyfaces experiment. It is necessary to tweak the batch_size and learning rate parameter for this to run smoothly.

There used to be a scikit-learn implementation too, but it was very slow and outdated. You can still find it by looking at the code at this commit

The code is MIT licensed.

About

Implementation of a variational Auto-encoder

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%