Skip to content

Commit

Permalink
Merge pull request #290 from moonbitlang/add-example
Browse files Browse the repository at this point in the history
add example
  • Loading branch information
bzy-debug authored Aug 23, 2024
2 parents 862325f + 5c725dd commit 9925c6b
Show file tree
Hide file tree
Showing 4 changed files with 448 additions and 1 deletion.
216 changes: 216 additions & 0 deletions moonbit-docs/docs/examples/myers-diff3.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
# Myers diff 3

This article is the third in the [diff series](https://docs.moonbitlang.com/examples/myers-diff). In the [previous part](https://docs.moonbitlang.com/examples/myers-diff2), we explored the full Myers algorithm and its limitations. In this post, we'll learn how to implement a variant of the Myers algorithm that operates with linear space complexity.

## Divide and Conquer

The linear variant of Myers' diff algorithm used by Git employs a concept called the _Snake_ (sometimes referred to as the _Middle Snake_) to break down the entire search process. A Snake in the edit graph represents a diagonal movement of 0 to N steps after a single left or down move. The linear Myers algorithm finds the middle Snake on the optimal edit path and uses it to divide the entire edit graph into two parts. The subsequent steps apply the same technique to the resulting subgraphs, eventually producing a complete edit path.

```bash
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 o---o---o---o---o---o---o
| | | | | | |
1 o---o---o---o---o---o---o
| | \ | | | | |
2 o---o---o---o---o---o---o
| | | | | | |
3 o---o---o---o---o---o---o
| | | | | \ | |
4 o---o---o---o---o---o---o
| | | | | | |
5 o---o---o---o---o---o---o
\
6 @
\
7 @---o---o---o---o---o---o
| | | | | |
8 o---o---o---o---o---o
| \ | | | | |
9 o---o---o---o---o---o
| | | | | |
10 o---o---o---o---o---o
| | | | | |
11 o---o---o---o---o---o
| | | \ | | |
12 o---o---o---o---o---o
| | | | | |
13 o---o---o---o---o---o
| | | | | \ |
14 o---o---o---o---o---o
```

> A quick recap: The optimal edit path is the one that has the shortest distance to the endpoint (a diagonal distance of zero), and there can be more than one such path.
Attentive readers may have noticed a chicken-and-egg problem: to find a Snake, you need an optimal edit path, but to get an optimal edit path, it seems like you need to run the original Myers algorithm first.

In fact, the idea behind the linear Myers algorithm is somewhat unconventional: it alternates the original Myers algorithm from both the top-left and bottom-right corners, but without storing the history. Instead, it simply checks if the searches from both sides overlap. When they do, the overlapping portion is returned as the Middle Snake.

This approach seems straightforward, but there are still some details to sort out.

When searching from the bottom-right, the diagonal coordinate can no longer be referred to as _k_. We need to define a new diagonal coordinate **c = k - delta**. This coordinate is the mirror image of _k_, perfectly suited for reverse direction search.

```bash
x k
0 1 2 3
0 1 2 3 \ \ \ \
y 0 o-----o-----o-----o o-----o-----o-----o
| | | | -1 | | | | \
| | | | \ | | | | 2
1 o-----o-----o-----o o-----o-----o-----o
| | \ | | -2 | | \ | | \
| | \ | | \ | | \ | | 1
2 o-----o-----o-----o o-----o-----o-----o
\ \ \ \
-3 -2 -1 0
c
```

How do we determine if the searches overlap? Simply check if the position on a diagonal line in the forward search has an _x_ value greater than that in the reverse search. However, since the _k_ and _c_ coordinates differ for the same diagonal, the conversion can be a bit tricky.

### Code Implementation

We'll start by defining `Snake` and `Box` types, representing the middle snake and the sub-edit graphs (since they're square, we call them `Box`).

```rust
struct Box {
left : Int,
right : Int,
top : Int,
bottom : Int
} derive(Debug, Show)

struct Snake {
start : (Int, Int),
end : (Int, Int)
} derive(Debug, Show)

fn width(self : Box) -> Int {
self.right - self.left
}

fn height(self : Box) -> Int {
self.bottom - self.top
}

fn size(self : Box) -> Int {
self.width() + self.height()
}

fn delta(self : Box) -> Int {
self.width() - self.height()
}
```

To avoid getting bogged down in details too early, let's assume we already have a function `midpoint : (Box, Array[Line], Array[Line]) -> Snake?` to find the middle snake. Then, we can build the function `find_path` to search for the complete path.

```rust
fn find_path(box : Box, a : Array[Line], b : Array[Line]) -> Iter[(Int, Int)]? {
let snake = midpoint(box, a, b)?;
let start = snake.start;
let end = snake.end;
let headbox = Box { left: box.left, top: box.top, right: start.0, bottom: start.1 };
let tailbox = Box { left: end.0, top: end.1, right: box.right, bottom: box.bottom };
// println("snake = \(snake)")
// println("headbox = \(headbox)")
// println("tailbox = \(tailbox)")
let head = find_path(headbox, a, b).or(Iter::singleton(start));
let tail = find_path(tailbox, a, b).or(Iter::singleton(end));
Some(head.concat(tail))
}
```

The implementation of `find_path` is straightforward, but `midpoint` is a bit more complex:

- For a `Box` of size 0, return `None`.
- Calculate the search boundaries. Since forward and backward searches each cover half the distance, divide by two. However, if the size of the `Box` is odd, add one more to the forward search boundary.
- Store the results of the forward and backward searches in two arrays.
- Alternate between forward and backward searches, returning `None` if no result is found.

```rust
fn midpoint(self : Box, a : Array[Line], b : Array[Line]) -> Snake? {
if self.size() == 0 {
return None;
}
let max = {
let half = self.size() / 2;
if is_odd(self.size()) {
half + 1
} else {
half
}
};
let vf = BPArray::make(2 * max + 1, 0);
vf[1] = self.left;
let vb = BPArray::make(2 * max + 1, 0);
vb[1] = self.bottom;
for d in 0..max + 1 {
match forward(self, vf, vb, d, a, b) {
None =>
match backward(self, vf, vb, d, a, b) {
None => continue,
res => return res,
},
res => return res,
}
}
None
}
```

The forward and backward searches have some modifications compared to the original Myers algorithm, which need a bit of explanation:

- Since we need to return the snake, the search process must calculate the previous coordinate (`px` stands for previous x).
- The search now works within a `Box` (not the global edit graph), so calculating `y` from `x` (or vice versa) requires conversion.
- The backward search minimizes `y` as a heuristic strategy, but minimizing `x` would also work.

```rust
fn forward(self : Box, vf : BPArray<Int>, vb : BPArray<Int>, d : Int, a : Array[Line], b : Array[Line]) -> Snake? {
for k in (0..=d).rev() {
let c = k - self.delta();
let (mut x, mut px) = if k == -d || (k != d && vf[k - 1] < vf[k

+ 1]) {
(vf[k + 1], vf[k + 1])
} else {
(vf[k - 1] + 1, vf[k - 1])
};
let mut y = self.top + (x - self.left) - k;
let py = if d == 0 || x != px { y } else { y - 1 };
while x < self.right && y < self.bottom && a[x].text == b[y].text {
x += 1;
y += 1;
}
vf[k] = x;
if is_odd(self.delta()) && (c >= -(d - 1) && c <= d - 1) && y >= vb[c] {
return Some(Snake { start: (px, py), end: (x, y) });
}
}
None
}

fn backward(self : Box, vf : BPArray<Int>, vb : BPArray<Int>, d : Int, a : Array[Line], b : Array[Line]) -> Snake? {
for c in (0..=d).rev() {
let k = c + self.delta();
let (mut y, mut py) = if c == -d || (c != d && vb[c - 1] > vb[c + 1]) {
(vb[c + 1], vb[c + 1])
} else {
(vb[c - 1] - 1, vb[c - 1])
};
let mut x = self.left + (y - self.top) + k;
let px = if d == 0 || y != py { x } else { x + 1 };
while x > self.left && y > self.top && a[x - 1].text == b[y - 1].text {
x -= 1;
y -= 1;
}
vb[c] = y;
if is_even(self.delta()) && (k >= -d && k <= d) && x <= vf[k] {
return Some(Snake { start: (x, y), end: (px, py) });
}
}
None
}
```

## Conclusion

In addition to the default diff algorithm, Git also offers another diff algorithm called patience diff. It differs significantly from Myers diff in approach and sometimes produces more readable diff results.
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
# 实现 Haskell 求值语义(系列三)

本期文章为在MoonBit中实现惰性求值的第三篇。在上一篇中,我们了解了let表达式的编译方法以及如何实现基本的算术比较操作。这一篇文章中,我们将实现一种基于上下文的优化方法,并添加对数据结构的支持。

## 追踪上下文
Expand Down
Loading

0 comments on commit 9925c6b

Please sign in to comment.