Skip to content

Commit

Permalink
STY: pull request mods
Browse files Browse the repository at this point in the history
  • Loading branch information
pierocor committed Feb 2, 2021
1 parent a851738 commit 96a7d5e
Show file tree
Hide file tree
Showing 3 changed files with 58 additions and 53 deletions.
2 changes: 1 addition & 1 deletion odl/contrib/datasets/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ Reference datasets with accompanying ODL geometries etc.
* `walnut_data`
* `lotus_root_data`

CT data as provided by Mayo Clinic. The data is from a human and of high resolution (512x512). To access the data, see [the webpage](https://www.aapm.org/GrandChallenge/LowDoseCT/#registration). Note that downloading this dataset requires signing up and signing a terms of use form.
CT data as provided by Mayo Clinic. The data is from a human and of high resolution (512x512). To access the data, see [the webpage](https://ctcicblog.mayo.edu/hubcap/patient-ct-projection-data-library/). Note that downloading this dataset requires installing the NBIA Data Retriever.
* `load_projections`
* `load_reconstruction`
* `images`
Expand Down
44 changes: 24 additions & 20 deletions odl/contrib/datasets/ct/examples/mayo_reconstruct.py
Original file line number Diff line number Diff line change
@@ -1,29 +1,38 @@
"""Reconstruct Mayo dataset using FBP and compare to reference recon.
Note that this example requires that Mayo has been previously downloaded and is
stored in the location indicated by "proj_folder" and "rec_folder".
Note that this example requires that projection and reconstruction data
of a CT scan from the Mayo dataset have been previously downloaded (see
[the webpage](https://ctcicblog.mayo.edu/hubcap/patient-ct-projection-data-library/))
and are stored in the locations indicated by "proj_dir" and "rec_dir".
In this example we only use a subset of the data for performance reasons,
there are ~32 000 projections per patient in the full dataset.
In this example we only use a subset of the data for performance reasons.
The number of projections per patient varies in the full dataset. To get
a reconstruction of the central part of the volume, modify the indices in
the argument of the `mayo.load_projections` function accordingly.
"""
import numpy as np
import os
import odl
from odl.contrib.datasets.ct import mayo
from time import perf_counter

# define data folders
proj_folder = odl.__path__[0] + '/../../data/LDCT-and-Projection-data/' \
'L004/08-21-2018-10971/1.000000-Full dose projections-24362/'
rec_folder = odl.__path__[0] + '/../../data/LDCT-and-Projection-data/' \
'L004/08-21-2018-84608/1.000000-Full dose images-59704/'
# replace with your local directory
mayo_dir = ''
# define projection and reconstruction data directories
# e.g. for patient L004 full dose CT scan:
proj_dir = os.path.join(
mayo_dir, 'L004/08-21-2018-10971/1.000000-Full dose projections-24362/')
rec_dir = os.path.join(
mayo_dir, 'L004/08-21-2018-84608/1.000000-Full dose images-59704/')

# Load projection data
print("Loading projection data from {:s}".format(proj_folder))
geometry, proj_data = mayo.load_projections(proj_folder,
# Load projection data restricting to a central slice
print("Loading projection data from {:s}".format(proj_dir))
geometry, proj_data = mayo.load_projections(proj_dir,
indices=slice(16000, 19000))
# Load reconstruction data
print("Loading reference data from {:s}".format(rec_folder))
recon_space, volume = mayo.load_reconstruction(rec_folder)
print("Loading reference data from {:s}".format(rec_dir))
recon_space, volume = mayo.load_reconstruction(rec_dir)

# ray transform
ray_trafo = odl.tomo.RayTransform(recon_space, geometry)
Expand All @@ -48,11 +57,6 @@

fbp_result_HU = (fbp_result-0.0192)/0.0192*1000

# Save reconstruction in Numpy format
fbp_filename = proj_folder+'/fbp_result.npy'
print("Saving reconstruction data in {:s}".format(fbp_filename))
np.save(fbp_filename, fbp_result_HU)

# Compare the computed recon to reference reconstruction (coronal slice)
ref = recon_space.element(volume)
diff = recon_space.element(volume - fbp_result_HU.asarray())
Expand All @@ -64,4 +68,4 @@

coords = [0, None, None]
fbp_result_HU.show('Recon (sagittal)', coords=coords)
ref.show('Reference (sagittal)', coords=coords)
ref.show('Reference (sagittal)', coords=coords)
65 changes: 33 additions & 32 deletions odl/contrib/datasets/ct/mayo.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,9 @@
In addition to the standard ODL requirements, this library also requires:
- tqdm
- dicom
- A copy of the Mayo dataset, see
https://www.aapm.org/GrandChallenge/LowDoseCT/#registration
- pydicom
- Samples from the Mayo dataset, see
https://ctcicblog.mayo.edu/hubcap/patient-ct-projection-data-library/
"""

from __future__ import division
Expand All @@ -23,6 +23,7 @@
import pydicom
import odl
import tqdm
from functools import partial

from pydicom.datadict import DicomDictionary, keyword_dict
from odl.discr.discr_utils import linear_interpolator
Expand All @@ -38,29 +39,28 @@
__all__ = ('load_projections', 'load_reconstruction')


def _read_projections(folder, indices):
"""Read mayo projections from a folder."""
def _read_projections(dir, indices):
"""Read mayo projections from a directory."""
datasets = []
data_array = []

# Get the relevant file names
file_names = sorted([f for f in os.listdir(folder) if f.endswith(".dcm")])
file_names = sorted([f for f in os.listdir(dir) if f.endswith(".dcm")])

if len(file_names) == 0:
raise ValueError('No DICOM files found in {}'.format(folder))
raise ValueError('No DICOM files found in {}'.format(dir))

file_names = file_names[indices]

for i, file_name in enumerate(tqdm.tqdm(file_names,
'Loading projection data')):
# read the file
try:
dataset = pydicom.read_file(folder + os.path.sep + file_name)
dataset = pydicom.read_file(os.path.join(dir, file_name))
except:
print("corrupted file: {}".format(file_name), file=sys.stderr)
print("error:\n{}".format(sys.exc_info()[1]), file=sys.stderr)
print("skipping to next file..", file=sys.stderr)
continue
raise

if not data_array:
# Get some required data
Expand All @@ -76,29 +76,28 @@ def _read_projections(folder, indices):
assert rescale_intercept == dataset.RescaleIntercept
assert rescale_slope == dataset.RescaleSlope


# Load the array as bytes
proj_array = np.array(np.frombuffer(dataset.PixelData, 'H'),
dtype='float32')
proj_array = proj_array.reshape([cols, rows])
data_array.append(proj_array[:, ::-1])
datasets.append(dataset)

data_array = np.array(data_array)
data_array = np.stack(data_array)
# Rescale array
data_array *= rescale_slope
data_array += rescale_intercept

return datasets, data_array


def load_projections(folder, indices=None, use_ffs=True):
"""Load geometry and data stored in Mayo format from folder.
def load_projections(dir, indices=None, use_ffs=True):
"""Load geometry and data stored in Mayo format from dir.
Parameters
----------
folder : str
Path to the folder where the Mayo DICOM files are stored.
dir : str
Path to the directory where the Mayo DICOM files are stored.
indices : optional
Indices of the projections to load.
Accepts advanced indexing such as slice or list of indices.
Expand All @@ -114,7 +113,7 @@ def load_projections(folder, indices=None, use_ffs=True):
Projection data, given as the line integral of the linear attenuation
coefficient (g/cm^3). Its unit is thus g/cm^2.
"""
datasets, data_array = _read_projections(folder, indices)
datasets, data_array = _read_projections(dir, indices)

# Get the angles
angles = np.array([d.DetectorFocalCenterAngularPosition for d in datasets])
Expand All @@ -139,8 +138,8 @@ def load_projections(folder, indices=None, use_ffs=True):
# For unknown reasons, mayo does not include the tag
# "TableFeedPerRotation", which is what we want.
# Instead we manually compute the pitch
table_dist = datasets[-1].DetectorFocalCenterAxialPosition - \
datasets[0].DetectorFocalCenterAxialPosition
table_dist = (datasets[-1].DetectorFocalCenterAxialPosition -
datasets[0].DetectorFocalCenterAxialPosition)
num_rot = (angles[-1] - angles[0]) / (2 * np.pi)
pitch = table_dist / num_rot

Expand All @@ -160,17 +159,19 @@ def load_projections(folder, indices=None, use_ffs=True):
detector_partition = odl.uniform_partition(det_minp, det_maxp, det_shape)

# Convert offset to odl definitions
offset_along_axis = datasets[0].DetectorFocalCenterAxialPosition - \
angles[0] / (2 * np.pi) * pitch
offset_along_axis = (datasets[0].DetectorFocalCenterAxialPosition -
angles[0] / (2 * np.pi) * pitch)

# Assemble geometry
angle_partition = odl.nonuniform_partition(angles)

# Flying focal spot
src_shift_func = None
if use_ffs:
src_shift_func = lambda angle: odl.tomo.flying_focal_spot(
angle, apart=angle_partition, shifts=shifts)
src_shift_func = partial(
odl.tomo.flying_focal_spot, apart=angle_partition, shifts=shifts)
else:
src_shift_func = None

geometry = odl.tomo.ConeBeamGeometry(angle_partition,
detector_partition,
Expand Down Expand Up @@ -203,8 +204,8 @@ def interpolate_flat_grid(data_array, range_grid, radial_dist):
"""

# convert coordinates
theta, up, vp = range_grid.meshgrid #ray_trafo.range.grid.meshgrid
# d = src_radius + det_radius
theta, up, vp = range_grid.meshgrid

u = radial_dist * np.arctan(up / radial_dist)
v = radial_dist / np.sqrt(radial_dist**2 + up**2) * vp

Expand All @@ -218,13 +219,13 @@ def interpolate_flat_grid(data_array, range_grid, radial_dist):
return proj_data


def load_reconstruction(folder, slice_start=0, slice_end=-1):
"""Load a volume from folder, also returns the corresponding partition.
def load_reconstruction(dir, slice_start=0, slice_end=-1):
"""Load a volume from dir, also returns the corresponding partition.
Parameters
----------
folder : str
Path to the folder where the DICOM files are stored.
dir : str
Path to the directory where the DICOM files are stored.
slice_start : int
Index of the first slice to use. Used for subsampling.
slice_end : int
Expand All @@ -249,10 +250,10 @@ def load_reconstruction(folder, slice_start=0, slice_end=-1):
This function should handle all of these peculiarities and give a volume
with the correct coordinate system attached.
"""
file_names = sorted([f for f in os.listdir(folder) if f.endswith(".dcm")])
file_names = sorted([f for f in os.listdir(dir) if f.endswith(".dcm")])

if len(file_names) == 0:
raise ValueError('No DICOM files found in {}'.format(folder))
raise ValueError('No DICOM files found in {}'.format(dir))

volumes = []
datasets = []
Expand All @@ -261,7 +262,7 @@ def load_reconstruction(folder, slice_start=0, slice_end=-1):

for file_name in tqdm.tqdm(file_names, 'loading volume data'):
# read the file
dataset = pydicom.read_file(folder + os.path.sep + file_name)
dataset = pydicom.read_file(os.path.join(dir, file_name))

# Get parameters
pixel_size = np.array(dataset.PixelSpacing)
Expand Down

0 comments on commit 96a7d5e

Please sign in to comment.