Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: derive the _schema automatically #941

Merged
merged 5 commits into from
Dec 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 29 additions & 11 deletions src/gentropy/dataset/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,9 @@
from functools import reduce
from typing import TYPE_CHECKING, Any

import pyspark.sql.functions as f
from pyspark.sql.types import DoubleType
from pyspark.sql import DataFrame
from pyspark.sql import functions as f
from pyspark.sql import types as t
project-defiant marked this conversation as resolved.
Show resolved Hide resolved
from pyspark.sql.window import Window
from typing_extensions import Self

Expand All @@ -18,25 +19,42 @@
if TYPE_CHECKING:
from enum import Enum

from pyspark.sql import Column, DataFrame
from pyspark.sql import Column
from pyspark.sql.types import StructType

from gentropy.common.session import Session


@dataclass
class Dataset(ABC):
"""Open Targets Gentropy Dataset.
"""Open Targets Gentropy Dataset Interface.

`Dataset` is a wrapper around a Spark DataFrame with a predefined schema. Schemas for each child dataset are described in the `schemas` module.
The `Dataset` interface is a wrapper around a Spark DataFrame with a predefined schema.
Class allows for overwriting the schema with `_schema` parameter.
If the `_schema` is not provided, the schema is inferred from the Dataset.get_schema specific
method which must be implemented by the child classes.
"""

_df: DataFrame
_schema: StructType
_schema: StructType | None = None

def __post_init__(self: Dataset) -> None:
"""Post init."""
self.validate_schema()
"""Post init.

Raises:
TypeError: If the type of the _df or _schema is not valid
"""
match self._df:
case DataFrame():
pass
case _:
raise TypeError(f"Invalid type for _df: {type(self._df)}")

match self._schema:
case None | t.StructType():
self.validate_schema()
case _:
raise TypeError(f"Invalid type for _schema: {type(self._schema)}")

@property
def df(self: Dataset) -> DataFrame:
Expand Down Expand Up @@ -64,7 +82,7 @@ def schema(self: Dataset) -> StructType:
Returns:
StructType: Dataframe expected schema
"""
return self._schema
return self._schema or self.get_schema()

@classmethod
def _process_class_params(
Expand Down Expand Up @@ -172,7 +190,7 @@ def validate_schema(self: Dataset) -> None:
Raises:
SchemaValidationError: If the DataFrame schema does not match the expected schema
"""
expected_schema = self._schema
expected_schema = self.schema
project-defiant marked this conversation as resolved.
Show resolved Hide resolved
observed_schema = self._df.schema

# Unexpected fields in dataset
Expand Down Expand Up @@ -244,7 +262,7 @@ def drop_infinity_values(self: Self, *cols: str) -> Self:
if len(cols) == 0:
return self
inf_strings = ("Inf", "+Inf", "-Inf", "Infinity", "+Infinity", "-Infinity")
inf_values = [f.lit(v).cast(DoubleType()) for v in inf_strings]
inf_values = [f.lit(v).cast(t.DoubleType()) for v in inf_strings]
conditions = [f.col(c).isin(inf_values) for c in cols]
# reduce individual filter expressions with or statement
# to col("beta").isin([lit(Inf)]) | col("beta").isin([lit(Inf)])...
Expand Down
2 changes: 1 addition & 1 deletion src/gentropy/dataset/pairwise_ld.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def __post_init__(self: PairwiseLD) -> None:
), f"The number of rows in a pairwise LD table has to be square. Got: {row_count}"

self.dimension = (int(sqrt(row_count)), int(sqrt(row_count)))
self.validate_schema()
super().__post_init__()

@classmethod
def get_schema(cls: type[PairwiseLD]) -> StructType:
Expand Down
35 changes: 24 additions & 11 deletions tests/gentropy/dataset/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,32 +21,44 @@ def get_schema(cls) -> StructType:
return StructType([StructField("value", IntegerType(), False)])


class TestCoalesceAndRepartition:
class TestDataset:
"""Test TestDataset.coalesce and TestDataset.repartition."""

def test_repartition(self: TestCoalesceAndRepartition) -> None:
def test_repartition(self: TestDataset) -> None:
"""Test Dataset.repartition."""
initial_partitions = self.test_dataset._df.rdd.getNumPartitions()
new_partitions = initial_partitions + 1
self.test_dataset.repartition(new_partitions)
assert self.test_dataset._df.rdd.getNumPartitions() == new_partitions

def test_coalesce(self: TestCoalesceAndRepartition) -> None:
def test_coalesce(self: TestDataset) -> None:
"""Test Dataset.coalesce."""
initial_partitions = self.test_dataset._df.rdd.getNumPartitions()
new_partitions = initial_partitions - 1 if initial_partitions > 1 else 1
self.test_dataset.coalesce(new_partitions)
assert self.test_dataset._df.rdd.getNumPartitions() == new_partitions

def test_initialize_without_schema(self: TestDataset, spark: SparkSession) -> None:
"""Test if Dataset derived class collects the schema from assets if schema is not provided."""
df = spark.createDataFrame([(1,)], schema=MockDataset.get_schema())
ds = MockDataset(_df=df)
assert (
ds.schema == MockDataset.get_schema()
), "Schema should be inferred from df"

def test_passing_incorrect_types(self: TestDataset, spark: SparkSession) -> None:
"""Test if passing incorrect object types to Dataset raises an error."""
with pytest.raises(TypeError):
MockDataset(_df="not a dataframe")
with pytest.raises(TypeError):
MockDataset(_df=self.df, _schema="not a schema")

@pytest.fixture(autouse=True)
def _setup(self: TestCoalesceAndRepartition, spark: SparkSession) -> None:
def _setup(self: TestDataset, spark: SparkSession) -> None:
"""Setup fixture."""
self.test_dataset = MockDataset(
_df=spark.createDataFrame(
[(1,), (2,), (3,)], schema=MockDataset.get_schema()
),
_schema=MockDataset.get_schema(),
)
df = spark.createDataFrame([(1,), (2,), (3,)], schema=MockDataset.get_schema())
self.df = df
self.test_dataset = MockDataset(_df=df, _schema=MockDataset.get_schema())


def test_dataset_filter(mock_study_index: StudyIndex) -> None:
Expand All @@ -68,6 +80,7 @@ def test_dataset_drop_infinity_values() -> None:
rows = [(v,) for v in data]
schema = StructType([StructField("field", DoubleType())])
input_df = spark.createDataFrame(rows, schema=schema)

assert input_df.count() == 7
# run without specifying *cols results in no filtering
ds = MockDataset(_df=input_df, _schema=schema)
Expand All @@ -76,7 +89,7 @@ def test_dataset_drop_infinity_values() -> None:
assert ds.drop_infinity_values("field").df.count() == 1


def test__process_class_params(spark: SparkSession) -> None:
def test_process_class_params(spark: SparkSession) -> None:
"""Test splitting of parameters between class and spark parameters."""
params = {
"_df": spark.createDataFrame([(1,)], schema=MockDataset.get_schema()),
Expand Down
Loading