-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
172 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
from pyspark.sql import SparkSession | ||
from pyspark.sql.functions import pandas_udf, PandasUDFType,col, udf | ||
from pyspark.sql.types import ArrayType, FloatType, MapType, StringType, StructType, StructField | ||
from llm_semantic_annotator import ModelEmbeddingManager,OwlTagManager | ||
import pandas as pd | ||
import os | ||
import numpy as np | ||
|
||
# Définissez le schéma de sortie de votre UDF | ||
schema_abstracts = StructType([ | ||
StructField("doi", StringType()), | ||
StructField("embedding", ArrayType(FloatType())) | ||
]) | ||
|
||
schema_tags = StructType([ | ||
StructField("term", StringType()), | ||
StructField("ontology", StringType()), | ||
StructField("label", StringType()), | ||
StructField("group", StringType()), | ||
StructField("embedding", ArrayType(FloatType())) | ||
]) | ||
|
||
result_schema = StructType([ | ||
StructField("doi", StringType()), | ||
StructField("tag_similarities", MapType(StringType(), FloatType())) | ||
]) | ||
|
||
config = { | ||
"encodeur": "sentence-transformers/all-MiniLM-L6-v2", | ||
"threshold_similarity_tag_chunk": 0.65, | ||
"threshold_similarity_tag": 0.80, | ||
"batch_size": 32 | ||
} | ||
|
||
|
||
@pandas_udf(schema_abstracts, PandasUDFType.GROUPED_MAP) | ||
def encode_abstracts_pandas(key,pdf): | ||
mem = ModelEmbeddingManager(config) | ||
|
||
abstracts = [{"doi": row.doi, "title": row.title, "abstract": row.abstract} for _, row in pdf.iterrows()] | ||
embeddings = mem.encode_abstracts(abstracts) | ||
|
||
result = [] | ||
for doi, emb_list in embeddings.items(): | ||
result += [{ # Utiliser += pour ajouter les éléments | ||
"doi": doi, | ||
"embedding": emb.tolist() | ||
} for emb in emb_list] | ||
|
||
|
||
return pd.DataFrame(result) | ||
|
||
@pandas_udf(schema_tags, PandasUDFType.GROUPED_MAP) | ||
def encode_tags_pandas(key, pdf): | ||
mem = ModelEmbeddingManager(config) | ||
|
||
tags = [{ | ||
"ontology": row.ontology, | ||
"term": row.term, | ||
"rdfs_label": row.rdfs_label, | ||
"description": row.description, | ||
"group": row.group | ||
} for _, row in pdf.iterrows()] | ||
|
||
tags_embedding = mem.encode_tags(tags) | ||
|
||
result = [{ | ||
"term": term, # Utilisez 'term' comme 'tag' dans le résultat | ||
"ontology": data['ontology'], | ||
"label": data['label'], | ||
"group": data['group'], | ||
"embedding": data['emb'].tolist() | ||
} for term, data in tags_embedding.items()] | ||
|
||
return pd.DataFrame(result) | ||
|
||
|
||
def cosine_similarity(vec1, vec2): | ||
if vec1 is None or vec2 is None: | ||
return None | ||
a = np.array(vec1) | ||
b = np.array(vec2) | ||
|
||
# Vérifiez que les vecteurs ne sont pas vides et ont la même taille | ||
if a.size == 0 or b.size == 0 or a.shape[0] != b.shape[0]: | ||
return None | ||
|
||
# Calculer la similarité cosinus | ||
cosine_sim = np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) | ||
|
||
# Retourner la similarité comme un scalaire | ||
return float(cosine_sim) if np.isfinite(cosine_sim) else None | ||
|
||
def main(): | ||
spark = SparkSession.builder.appName("MSD").getOrCreate() | ||
|
||
# Chemins vers les fichiers Parquet | ||
parquet_abstracts_path = "data/embeddings/abstracts_embeddings.parquet" | ||
parquet_tags_path = "data/embeddings/tags_embeddings.parquet" | ||
|
||
onto = "data/ontology/TransformON_V9.0.ttl" | ||
onto = "data/ontology/test.ttl" | ||
abstracts = "data/msd/export-pubmed-20241014-4-planetome-tagging-sub-test" | ||
abstracts = "data/msd/export-pubmed-20241014-4-planetome-tagging-sub-test/part-00132-6787be90-eb7f-4950-8ef0-98d9dbbbcd38-c003.json" | ||
|
||
results = "data/spark/results.parquet" | ||
mem = ModelEmbeddingManager(config) | ||
df = spark.read.json(abstracts) | ||
#df.printSchema() | ||
#df.show() | ||
|
||
# Appliquer la UDF Pandas | ||
if os.path.exists(parquet_abstracts_path): | ||
print("Chargement des embeddings d'abstracts à partir du fichier Parquet existant.") | ||
result_df_doi = spark.read.parquet(parquet_abstracts_path) | ||
else: | ||
result_df_doi = df.groupBy("doi").apply(encode_abstracts_pandas) | ||
result_df_doi.write.mode("overwrite").parquet(parquet_abstracts_path) | ||
|
||
result_df_doi.show() | ||
if os.path.exists(parquet_tags_path): | ||
print("Chargement des embeddings de tags à partir du fichier Parquet existant.") | ||
spark_df_tags = spark.read.parquet(parquet_tags_path) | ||
else: | ||
owl_content = spark.sparkContext.wholeTextFiles(onto).values().collect()[0] | ||
|
||
tag_manager = OwlTagManager(config,mem) | ||
df_tags = tag_manager.build_tags_from_owl( | ||
ontology="transformon", | ||
ontology_group_name="transform_link", | ||
ontology_config = { | ||
"prefix": "http://opendata.inrae.fr/PO2/Ontology/TransformON/Component/", | ||
"format": "turtle", | ||
"label" : "skos:prefLabel", | ||
"properties": ["skos:scopeNote"] | ||
}, | ||
debug_nb_terms_by_ontology=-1, | ||
owl_content=owl_content) | ||
print(df_tags[0]) | ||
spark_df_tags = spark.createDataFrame(df_tags) | ||
spark_df_tags.show() | ||
# Appliquer la UDF pandas | ||
result_df_tags = spark_df_tags.groupBy("term").apply(encode_tags_pandas) | ||
# Renommer la colonne 'term' en 'tag' si nécessaire | ||
result_df_tags = result_df_tags.withColumnRenamed('term', 'tag') | ||
result_df_tags.printSchema() | ||
spark_df_tags=result_df_tags | ||
spark_df_tags.write.mode("overwrite").parquet(parquet_tags_path) | ||
|
||
spark_df_tags.show() | ||
|
||
# Renommez les colonnes embedding pour éviter l'ambiguïté | ||
result_df_doi = result_df_doi.withColumnRenamed("embedding", "abstract_embedding") | ||
spark_df_tags = spark_df_tags.withColumnRenamed("embedding", "tag_embedding") | ||
|
||
cosine_similarity_udf = udf(cosine_similarity, FloatType()) | ||
|
||
result_df = result_df_doi.crossJoin(spark_df_tags) \ | ||
.withColumn("similarity", cosine_similarity_udf(col("abstract_embedding"), col("tag_embedding"))) \ | ||
.select("doi", "tag", "similarity") \ | ||
.filter(col("similarity") >= 0.2) | ||
|
||
# Afficher les résultats | ||
result_df.show(truncate=False) | ||
|
||
# Sauvegarder les résultats si nécessaire | ||
result_df.write.mode("overwrite").parquet(results) | ||
|
||
spark.stop() | ||
|
||
if __name__ == "__main__": | ||
main() |