Prasen Kumar Sharma, Priyankar Jain, Arijit Sur
[Paper Link] (ICIP'19)
@inproceedings{8803353,
author={P. K. {Sharma} and P. {Jain} and A. {Sur}},
booktitle={2019 IEEE International Conference on Image Processing (ICIP)},
title={Dual-Domain Single Image De-Raining Using Conditional Generative Adversarial Network},
year={2019},
volume={},
number={},
pages={2796-2800},
keywords={Image De-raining;Conditional Generative Adversarial Network (cGAN);Haar Wavelets;Perceptual Loss},
doi={10.1109/ICIP.2019.8803353},
ISSN={2381-8549},
month={Sep.},}
- Linux
- Python 2 or 3
- CPU or NVIDIA GPU + CUDA CuDNN (CUDA 8.0)
-
Install Tensorflow and dependencies from https://www.tensorflow.org/install (conda install -c conda-forge tensorflow)
-
Install python packages: numpy, scipy, PIL, pdb, sewar
python3 testing.py
Pre-trained model can be downloaded at (put it in the folder 'models'): https://drive.google.com/drive/folders/13WJn0gjpanrhd07Rv3oO3sHb0i3KaTtv?usp=sharing
Pre-trained models related to wavelets can be downloaded at (put it in the folder 'sub-bands-npzs'): https://drive.google.com/drive/folders/1LwqnsJqvCKA-BP44otLJuA1X1Udg2WGj?usp=sharing
Training (heavy, medium, light) and testing (TestA and Test B) data can be downloaded at the following link: https://drive.google.com/file/d/1cMXWICiblTsRl1zjN8FizF5hXOpVOJz4/view?usp=sharing
Great thanks to He Zhang for dataset. Codes heavily borrowed from DDN