Skip to content

pksvision/Dual-Domain-Single-Image-De-Raining-using-Conditional-Generative-Adversarial-Networks-ICIP2019

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DD-cGAN

Dual-Domain Single Image De-Raining using Conditional Generative Adversarial Networks

Prasen Kumar Sharma, Priyankar Jain, Arijit Sur

[Paper Link] (ICIP'19)

Complete training code coming soon...

@inproceedings{8803353,
  author={P. K. {Sharma} and P. {Jain} and A. {Sur}}, 
      booktitle={2019 IEEE International Conference on Image Processing (ICIP)}, 
      title={Dual-Domain Single Image De-Raining Using Conditional Generative Adversarial Network}, 
   year={2019}, 
   volume={}, 
   number={}, 
   pages={2796-2800}, 
   keywords={Image De-raining;Conditional Generative Adversarial Network (cGAN);Haar Wavelets;Perceptual Loss}, 
   doi={10.1109/ICIP.2019.8803353}, 
   ISSN={2381-8549}, 
   month={Sep.},}

Prerequisites:

  1. Linux
  2. Python 2 or 3
  3. CPU or NVIDIA GPU + CUDA CuDNN (CUDA 8.0)

Installation:

  1. Install Tensorflow and dependencies from https://www.tensorflow.org/install (conda install -c conda-forge tensorflow)

  2. Install python packages: numpy, scipy, PIL, pdb, sewar

Demo using pre-trained model

python3 testing.py

Pre-trained model can be downloaded at (put it in the folder 'models'): https://drive.google.com/drive/folders/13WJn0gjpanrhd07Rv3oO3sHb0i3KaTtv?usp=sharing

Pre-trained models related to wavelets can be downloaded at (put it in the folder 'sub-bands-npzs'): https://drive.google.com/drive/folders/1LwqnsJqvCKA-BP44otLJuA1X1Udg2WGj?usp=sharing

Dataset

Training (heavy, medium, light) and testing (TestA and Test B) data can be downloaded at the following link: https://drive.google.com/file/d/1cMXWICiblTsRl1zjN8FizF5hXOpVOJz4/view?usp=sharing

Acknowledgments

Great thanks to He Zhang for dataset. Codes heavily borrowed from DDN

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages