Skip to content

Commit

Permalink
Update
Browse files Browse the repository at this point in the history
  • Loading branch information
polyaxon-team authored and mmourafiq committed Sep 27, 2020
1 parent c3ed087 commit 42be1cb
Show file tree
Hide file tree
Showing 17 changed files with 402 additions and 1 deletion.
8 changes: 7 additions & 1 deletion in_cluster/build_image/build.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@ kind: operation
name: build
params:
destination:
connection: docker-connection
value:
name: polyaxon/polyaxon-examples
connection: docker-connection
runPatch:
init:
- dockerfile:
Expand All @@ -17,5 +17,11 @@ runPatch:
- pip3 install xgboost
- pip3 install keras
- pip3 install tensorflow_datasets
- pip3 install torch
- pip3 install torchvision
- pip3 install pytorch-ignite
- pip3 install tensorboard
- pip3 install matplotlib
- pip3 install fastai
langEnv: 'en_US.UTF-8'
hubRef: kaniko
Empty file added in_cluster/fastai/__init__.py
Empty file.
25 changes: 25 additions & 0 deletions in_cluster/fastai/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import argparse

from fastai.vision.all import *
from fastai.basics import *

from polyaxon.tracking.contrib.fastai import PolyaxonFastaiCallback

path = untar_data(URLs.MNIST_SAMPLE)
items = get_image_files(path)
tds = Datasets(items, [PILImageBW.create, [parent_label, Categorize()]], splits=GrandparentSplitter()(items))
dls = tds.dataloaders(bs=32, after_item=[ToTensor(), IntToFloatTensor()])

# create a learner with gradient accumulation
learn = cnn_learner(
dls,
resnet18,
loss_func=CrossEntropyLossFlat(),
cbs=[PolyaxonFastaiCallback()]
)

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--fit', type=int, default=2)
args = parser.parse_args()
learn.fit(args.fit)
18 changes: 18 additions & 0 deletions in_cluster/fastai/polyaxonfile-mnist.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
version: 1.1
kind: component
name: mnist
tags: [examples]

inputs:
- {name: fit, type: int, value: 3, isOptional: true}

run:
kind: job
init:
- git: {"url": "https://github.com/polyaxon/polyaxon-examples"}
container:
image: polyaxon/polyaxon-examples
workingDir: "{{ globals.artifacts_path }}/polyaxon-examples/in_cluster/fastai"
command: ["python", "-u", "mnist.py"]
imagePullPolicy: "Always"
args: ["--fit={{ fit }}"]
18 changes: 18 additions & 0 deletions in_cluster/fastai/polyaxonfile-segmentation.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
version: 1.1
kind: component
name: segmentation
tags: [examples]

inputs:
- {name: fit, type: int, value: 3, isOptional: true}

run:
kind: job
init:
- git: {"url": "https://github.com/polyaxon/polyaxon-examples"}
container:
image: polyaxon/polyaxon-examples
workingDir: "{{ globals.artifacts_path }}/polyaxon-examples/in_cluster/fastai"
command: ["python", "-u", "segmentation.py"]
imagePullPolicy: "Always"
args: ["--fit={{ fit }}"]
18 changes: 18 additions & 0 deletions in_cluster/fastai/polyaxonfile-tabular.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
version: 1.1
kind: component
name: segmentation
tags: [examples]

inputs:
- {name: fit, type: int, value: 3, isOptional: true}

run:
kind: job
init:
- git: {"url": "https://github.com/polyaxon/polyaxon-examples"}
container:
image: polyaxon/polyaxon-examples
workingDir: "{{ globals.artifacts_path }}/polyaxon-examples/in_cluster/fastai"
command: ["python", "-u", "tabular.py"]
imagePullPolicy: "Always"
args: ["--fit={{ fit }}"]
27 changes: 27 additions & 0 deletions in_cluster/fastai/segmentation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
import argparse

from fastai.vision.all import *

from polyaxon.tracking.contrib.fastai import PolyaxonFastaiCallback


path = untar_data(URLs.CAMVID_TINY)
codes = np.loadtxt(path / 'codes.txt', dtype=str)
fnames = get_image_files(path / "images")


def label_func(fn):
return path / "labels" / f"{fn.stem}_P{fn.suffix}"


dls = SegmentationDataLoaders.from_label_func(
path, bs=8, fnames=fnames, label_func=label_func, codes=codes
)

learn = unet_learner(dls, resnet18, cbs=[PolyaxonFastaiCallback(log_model=True), SaveModelCallback()])

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--fit', type=int, default=2)
args = parser.parse_args()
learn.fit(args.fit)
25 changes: 25 additions & 0 deletions in_cluster/fastai/tabular.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import argparse

from fastai.tabular.all import *

from polyaxon.tracking.contrib.fastai import PolyaxonFastaiCallback

path = untar_data(URLs.ADULT_SAMPLE)
df = pd.read_csv(path / 'adult.csv')
dls = TabularDataLoaders.from_csv(
path / 'adult.csv',
path=path,
y_names="salary",
cat_names=['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race'],
cont_names=['age', 'fnlwgt', 'education-num'],
procs=[Categorify, FillMissing, Normalize]
)

# create a learner and train
learn = tabular_learner(dls, metrics=accuracy, cbs=[PolyaxonFastaiCallback()])

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--fit', type=int, default=2)
args = parser.parse_args()
learn.fit(args.fit)
Empty file added in_cluster/ignite/__init__.py
Empty file.
136 changes: 136 additions & 0 deletions in_cluster/ignite/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
import argparse

import torch
from torch import nn
from torch.optim import SGD
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.transforms import Compose, ToTensor, Normalize
from torchvision.datasets import MNIST

from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator
from ignite.metrics import Accuracy, Loss

from tqdm import tqdm

from polyaxon.tracking.contrib.ignite import PolyaxonIgniteLogger


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)

def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=-1)


def get_data_loaders(train_batch_size, val_batch_size):
data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])

train_loader = DataLoader(MNIST(download=True, root=".", transform=data_transform, train=True),
batch_size=train_batch_size, shuffle=True)

val_loader = DataLoader(MNIST(download=False, root=".", transform=data_transform, train=False),
batch_size=val_batch_size, shuffle=False)
return train_loader, val_loader


def main(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval):
train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
model = Net()
device = 'cpu'

if torch.cuda.is_available():
device = 'cuda'
model = model.to(device)
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device)
evaluator = create_supervised_evaluator(model,
metrics={'accuracy': Accuracy(),
'nll': Loss(F.nll_loss)},
device=device)

desc = "ITERATION - loss: {:.2f}"
pbar = tqdm(
initial=0, leave=False, total=len(train_loader),
desc=desc.format(0)
)

@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
def log_training_loss(engine):
pbar.desc = desc.format(engine.state.output)
pbar.update(log_interval)

@trainer.on(Events.EPOCH_COMPLETED)
def log_training_results(engine):
pbar.refresh()
evaluator.run(train_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics['accuracy']
avg_nll = metrics['nll']
tqdm.write(
"Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}"
.format(engine.state.epoch, avg_accuracy, avg_nll)
)

@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
evaluator.run(val_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics['accuracy']
avg_nll = metrics['nll']
tqdm.write(
"Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}"
.format(engine.state.epoch, avg_accuracy, avg_nll))

pbar.n = pbar.last_print_n = 0

# Polyaxon
polyaxon_logger = PolyaxonIgniteLogger()
polyaxon_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
output_transform=lambda loss: {"loss": loss}
)
polyaxon_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="training",
metric_names=["nll", "accuracy"],
global_step_transform=lambda *_: trainer.state.iteration,
)
polyaxon_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer,
param_name='lr' # optional
)

trainer.run(train_loader, max_epochs=epochs)
pbar.close()


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--val_batch_size', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--momentum', type=float, default=0.1)
parser.add_argument('--log_interval', type=int, default=10)
args = parser.parse_args()
main(
args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum, args.log_interval
)
30 changes: 30 additions & 0 deletions in_cluster/ignite/polyaxonfile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
version: 1.1
kind: component
name: mnist
tags: [examples]

inputs:
- {name: epochs, type: int, value: 2, isOptional: true}
- {name: batch_size, type: int, value: 256, isOptional: true}
- {name: val_batch_size, type: int, value: 100, isOptional: true}
- {name: lr, type: float, value: 0.001, isOptional: true}
- {name: momentum, type: float, value: 0.1, isOptional: true}
- {name: log_interval, type: int, value: 10, isOptional: true}

run:
kind: job
init:
- git: {"url": "https://github.com/polyaxon/polyaxon-examples"}
container:
image: polyaxon/polyaxon-examples
workingDir: "{{ globals.artifacts_path }}/polyaxon-examples/in_cluster/ignite"
command: ["python", "-u", "mnist.py"]
imagePullPolicy: "Always"
args: [
"{{ params.epochs.as_arg }}",
"{{ params.batch_size.as_arg }}",
"{{ params.val_batch_size.as_arg }}",
"{{ params.lr.as_arg }}",
"{{ params.momentum.as_arg }}",
"{{ params.log_interval.as_arg }}",
]
57 changes: 57 additions & 0 deletions in_cluster/sklearn/iris/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import streamlit as st
import pandas as pd
import joblib
import argparse

from PIL import Image


def load_model(model_path: str):
model = open(model_path, "rb")
return joblib.load(model)


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-path',
type=str,
)
args = parser.parse_args()

setosa = Image.open("images/iris-setosa.png")
versicolor = Image.open("images/iris-versicolor.png")
virginica = Image.open("images/iris-virginica.png")
classifier = load_model(args.model_path)
print(classifier)

st.title("Iris flower species Classification")
st.sidebar.title("Features")
parameter_list = [
"Sepal length (cm)",
"Sepal Width (cm)",
"Petal length (cm)",
"Petal Width (cm)"
]
sliders = []
for parameter, parameter_df in zip(parameter_list, ['5.2', '3.2', '4.2', '1.2']):
values = st.sidebar.slider(
label=parameter,
key=parameter,
value=float(parameter_df),
min_value=0.0,
max_value=8.0,
step=0.1
)
sliders.append(values)

input_variables = pd.DataFrame([sliders], columns=parameter_list)

prediction = classifier.predict(input_variables)
if prediction == 0:
st.image(setosa)
elif prediction == 1:
st.image(versicolor)
else:
st.image(virginica)

Loading

0 comments on commit 42be1cb

Please sign in to comment.