Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

factored out the latent model #59

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
215 changes: 215 additions & 0 deletions b3d/chisight/latent_particle_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
import jax.numpy as jnp
import b3d
from b3d import Pose
import jax
import jax.numpy as jnp
import genjax
from genjax import gen
from b3d import Pose, Mesh
from b3d.chisight.sparse.gps_utils import add_dummy_var
from b3d.pose import uniform_pose_in_ball
dummy_mapped_uniform_pose = add_dummy_var(uniform_pose_in_ball).vmap(in_axes=(0,None,None,None))


uniform_pose_args = (Pose.identity(), 2.0, 0.5)

# # # # # # # # # # # # # # # # # # # # # #
#
# Latent model shared by sparse and dense version
#
# # # # # # # # # # # # # # # # # # # # # #
@gen
def initial_particle_system_state(
num_particles,
num_clusters,
relative_particle_poses_prior_params,
initial_object_poses_prior_params,
camera_pose_prior_params,
):
relative_particle_poses = (
dummy_mapped_uniform_pose(jnp.arange(num_particles.const), *relative_particle_poses_prior_params)
@ "particle_poses"
)

object_assignments = (
b3d.modeling_utils.categorical.vmap(in_axes=(0,))(jnp.zeros((num_particles.const, num_clusters.const)))
@ "object_assignments"
)

# Cluster pose in world coordinates
initial_object_poses = (
dummy_mapped_uniform_pose(jnp.arange(num_clusters.const), *initial_object_poses_prior_params)
@ "object_poses"
)

# Absolute particle poses in world coordinates
absolute_particle_poses = initial_object_poses[object_assignments].compose(
relative_particle_poses
)

# Initial camera pose in world coordinates
initial_camera_pose = (
uniform_pose_in_ball(*camera_pose_prior_params)
@ "initial_camera_pose"
)

# Initial visibility mask
initial_vis_mask = (
b3d.modeling_utils.bernoulli.vmap(in_axes=(0,))(
jnp.repeat(jax.scipy.special.logit(0.5), num_particles.const))
@ "initial_visibility"
)

dynamic_state = (initial_object_poses, initial_camera_pose)
static_state = (object_assignments, relative_particle_poses, num_particles)

return (
(dynamic_state, static_state),
{
"relative_particle_poses": relative_particle_poses,
"absolute_particle_poses": absolute_particle_poses,
"object_poses": initial_object_poses,
"camera_pose": initial_camera_pose,
"vis_mask": initial_vis_mask,
"visibility_mask": initial_vis_mask
}
)

@gen
def particle_system_state_step(carried_state, _):
dynamic_state, static_state = carried_state
object_poses, camera_pose = dynamic_state
object_assignments, relative_particle_poses, num_particles = static_state

new_object_poses = (
uniform_pose_in_ball.vmap(in_axes=(0, None, None))(object_poses, 0.1, 0.1)
@ "object_poses"
)

# Absolute particle poses in world coordinates
absolute_particle_poses = new_object_poses[object_assignments].compose(
relative_particle_poses
)

# Updated camera pose in world coordinates
new_camera_pose = (
uniform_pose_in_ball(camera_pose, 0.1, 0.2)
@ "camera_pose"
)

# Visibility mask
vis_mask = (
b3d.modeling_utils.bernoulli.vmap(in_axes=(0,))(jnp.repeat(jax.scipy.special.logit(0.5), num_particles.const))
@ "visibility"
)

new_dynamic_state = (new_object_poses, new_camera_pose)
new_state = (new_dynamic_state, static_state)
return (
new_state,
{
"relative_particle_poses": relative_particle_poses,
"absolute_particle_poses": absolute_particle_poses,
"object_poses": new_object_poses,
"camera_pose": new_camera_pose,
"vis_mask": vis_mask,
"visibility_mask": vis_mask
}
)

@gen
def latent_particle_model(
num_timesteps, # const object
num_particles, # const object
num_clusters, # const object
relative_particle_poses_prior_params,
initial_object_poses_prior_params,
camera_pose_prior_params
):
"""
Retval is a dict with keys "relative_particle_poses", "absolute_particle_poses",
"object_poses", "camera_poses", "vis_mask"
Leading dimension for each timestep is the batch dimension.
"""
(state0, init_retval) = initial_particle_system_state(
num_particles, num_clusters,
relative_particle_poses_prior_params,
initial_object_poses_prior_params,
camera_pose_prior_params
) @ "state0"

final_state, scan_retvals = particle_system_state_step.scan(n=(num_timesteps.const - 1))(state0, None) @ "states1+"

# concatenate each element of init_retval, scan_retvals
return jax.tree.map(
lambda t1, t2: jnp.concatenate([t1[None, :], t2], axis=0),
init_retval, scan_retvals
), final_state


# # # # # # # # # # # # # # # # # # # # # #
#
# Quick access utils
#
# # # # # # # # # # # # # # # # # # # # # #
def visualize_particle_system(
latent_particle_model_args, particle_dynamics_summary, final_state,
*,
transform_Viz_Trace=Pose.identity(), # Transform the trace's world coordinate system to the
# coordinate system used by the visualizers
viz_prefix="trace"
):
import rerun as rr
(dynamic_state, static_state) = final_state

(
num_timesteps, # const object
num_particles, # const object
num_clusters, # const object
relative_particle_poses_prior_params,
initial_object_poses_prior_params,
camera_pose_prior_params
) = latent_particle_model_args

colors = b3d.distinct_colors(num_clusters.const)
absolute_particle_poses = particle_dynamics_summary["absolute_particle_poses"]
object_poses = particle_dynamics_summary["object_poses"]
camera_pose = particle_dynamics_summary["camera_pose"]
object_assignments = static_state[0]

cluster_colors = jnp.array(b3d.distinct_colors(num_clusters.const))

rr.log(f"{viz_prefix}/3D", rr.Transform3D(
translation=transform_Viz_Trace.position,
rotation=transform_Viz_Trace.xyzw
))

rr.log(
f"/{viz_prefix}/3D/camera",
rr.Pinhole(
resolution=[0.1,0.1],
focal_length=0.1,
),
timeless=True
)

for t in range(num_timesteps.const):
rr.set_time_sequence("time", t)

cam_pose = camera_pose[t]
rr.log(
f"{viz_prefix}/3D/camera",
rr.Transform3D(translation=cam_pose.position, rotation=rr.Quaternion(xyzw=cam_pose.xyzw)),
)

rr.log(
f"{viz_prefix}/3D/absolute_particle_poses",
rr.Points3D(
absolute_particle_poses[t].pos,
colors=cluster_colors[object_assignments]
)
)

for i in range(num_clusters.const):
b3d.rr_log_pose(f"{viz_prefix}/3D/cluster/{i}", object_poses[t][i])

129 changes: 5 additions & 124 deletions b3d/chisight/particle_system.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,131 +13,12 @@

uniform_pose_args = (Pose.identity(), 2.0, 0.5)

@gen
def initial_particle_system_state(
num_particles,
num_clusters,
relative_particle_poses_prior_params,
initial_object_poses_prior_params,
camera_pose_prior_params,
):
relative_particle_poses = (
dummy_mapped_uniform_pose(jnp.arange(num_particles.const), *relative_particle_poses_prior_params)
@ "particle_poses"
)

object_assignments = (
b3d.modeling_utils.categorical.vmap(in_axes=(0,))(jnp.zeros((num_particles.const, num_clusters.const)))
@ "object_assignments"
)

# Cluster pose in world coordinates
initial_object_poses = (
dummy_mapped_uniform_pose(jnp.arange(num_clusters.const), *initial_object_poses_prior_params)
@ "object_poses"
)

# Absolute particle poses in world coordinates
absolute_particle_poses = initial_object_poses[object_assignments].compose(
relative_particle_poses
)

# Initial camera pose in world coordinates
initial_camera_pose = (
uniform_pose_in_ball(*camera_pose_prior_params)
@ "initial_camera_pose"
)

# Initial visibility mask
initial_vis_mask = (
b3d.modeling_utils.bernoulli.vmap(in_axes=(0,))(
jnp.repeat(jax.scipy.special.logit(0.5), num_particles.const))
@ "initial_visibility"
)

dynamic_state = (initial_object_poses, initial_camera_pose)
static_state = (object_assignments, relative_particle_poses, num_particles)

return (
(dynamic_state, static_state),
{
"relative_particle_poses": relative_particle_poses,
"absolute_particle_poses": absolute_particle_poses,
"object_poses": initial_object_poses,
"camera_pose": initial_camera_pose,
"vis_mask": initial_vis_mask
}
)

@gen
def particle_system_state_step(carried_state, _):
dynamic_state, static_state = carried_state
object_poses, camera_pose = dynamic_state
object_assignments, relative_particle_poses, num_particles = static_state

new_object_poses = (
uniform_pose_in_ball.vmap(in_axes=(0, None, None))(object_poses, 0.1, 0.1)
@ "object_poses"
)

# Absolute particle poses in world coordinates
absolute_particle_poses = new_object_poses[object_assignments].compose(
relative_particle_poses
)

# Updated camera pose in world coordinates
new_camera_pose = (
uniform_pose_in_ball(camera_pose, 0.1, 0.2)
@ "camera_pose"
)

# Visibility mask
vis_mask = (
b3d.modeling_utils.bernoulli.vmap(in_axes=(0,))(jnp.repeat(jax.scipy.special.logit(0.5), num_particles.const))
@ "visibility"
)

new_dynamic_state = (new_object_poses, new_camera_pose)
new_state = (new_dynamic_state, static_state)
return (
new_state,
{
"relative_particle_poses": relative_particle_poses,
"absolute_particle_poses": absolute_particle_poses,
"object_poses": new_object_poses,
"camera_pose": new_camera_pose,
"vis_mask": vis_mask
}
)

@gen
def latent_particle_model(
num_timesteps, # const object
num_particles, # const object
num_clusters, # const object
relative_particle_poses_prior_params,
initial_object_poses_prior_params,
camera_pose_prior_params
):
"""
Retval is a dict with keys "relative_particle_poses", "absolute_particle_poses",
"object_poses", "camera_poses", "vis_mask"
Leading dimension for each timestep is the batch dimension.
"""
(state0, init_retval) = initial_particle_system_state(
num_particles, num_clusters,
relative_particle_poses_prior_params,
initial_object_poses_prior_params,
camera_pose_prior_params
) @ "state0"

final_state, scan_retvals = particle_system_state_step.scan(n=(num_timesteps.const - 1))(state0, None) @ "states1+"
from .latent_particle_model import (
initial_particle_system_state,
particle_system_state_step,
latent_particle_model
)

# concatenate each element of init_retval, scan_retvals
return jax.tree.map(
lambda t1, t2: jnp.concatenate([t1[None, :], t2], axis=0),
init_retval, scan_retvals
), final_state

@genjax.gen
def sparse_observation_model(particle_absolute_poses, camera_pose, visibility, instrinsics, sigma):
Expand Down
22 changes: 22 additions & 0 deletions scripts/kill_gpu_processes.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
#!/bin/bash

bold=$(tput bold)
normal=$(tput sgr0)

# Run nvidia-smi to get the list of processes using the GPU
echo -e "Running \`nvidia-smi\` and killing all GPU processes..."
output=$(nvidia-smi --query-compute-apps=pid --format=csv,noheader,nounits)

# Check if the output is not empty
if [[ -z "$output" ]]; then
echo "...${bold}No GPU processes found.${normal}"
exit 0
fi

# Loop through each PID and kill the process
for pid in $output; do
echo "...Killing PID: $pid"
kill -9 $pid
done

echo "${bold}All GPU processes have been killed.${normal}"
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@
"https://storage.googleapis.com/jax-releases/jax_cuda_releases.html"
],
install_requires=[
"genjax @ git+ssh://[email protected]/probcomp/genjax.git@v0.4.0",
"genjax @ git+ssh://[email protected]/probcomp/genjax.git",
"rerun-sdk==0.16.1",
"tqdm==4.66.2",
"numpy==1.26.4",
Expand Down