Skip to content

Commit

Permalink
Merge pull request #23 from IlianPihlajamaa/master
Browse files Browse the repository at this point in the history
Remove type instabilities and allocations (~20x speedup)
  • Loading branch information
ranjanan authored Feb 17, 2024
2 parents 5281388 + 319aa32 commit 7dc3167
Showing 1 changed file with 27 additions and 13 deletions.
40 changes: 27 additions & 13 deletions src/vegas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,9 @@ function vegas(func,
for dim = 1:ndim
delx[:,dim] .= ((ub[dim] - lb[dim]) / nbins)
end




# Initialize all cumulative variables
# for integral and sd estimation
nevals = 0
Expand All @@ -102,26 +104,35 @@ function vegas(func,
sigma_squares = Float64[]
iter = 1

ymat = zeros(ndim, ncalls)
xmat = similar(ymat)

from_y_to_i(y) = floor(Int,nbins*y) + 1
delta(y) = y*nbins + 1 - from_y_to_i(y)
from_y_to_x(y,dim) = x[from_y_to_i(y),dim] + delx[from_y_to_i(y),dim]*delta(y)
J(y,dim) = nbins*delx[from_y_to_i(y),dim]

imat = map(from_y_to_i, ymat)
Js = zeros(eltype(ymat), size(ymat, 2))
Jsf = copy(Js)
while iter <= maxiter

# Sample `ncalls` points from this grid
# Uniform sampling in `y` space
ymat = QuasiMonteCarlo.sample(ncalls, zeros(ndim), ones(ndim), Uniform())
rand!(ymat) #QuasiMonteCarlo.sample(ncalls, zeros(ndim), ones(ndim), Uniform())


from_y_to_i(y) = floor(Int,nbins*y) + 1
delta(y) = y*nbins + 1 - from_y_to_i(y)
from_y_to_x(y,dim) = x[from_y_to_i(y),dim] + delx[from_y_to_i(y),dim]*delta(y)
J(y,dim) = nbins*delx[from_y_to_i(y),dim]

xmat = similar(ymat)
for dim = 1:ndim
xmat[dim,:] .= map(y -> from_y_to_x(y, dim), ymat[dim,:])
for j in 1:ncalls
xmat[dim,j] = from_y_to_x(ymat[dim,j], dim)
end
end
Js = zeros(eltype(ymat), size(ymat, 2))
for i = 1:size(ymat,2)
Js[i] = prod(J(ymat[dim, i],dim) for dim = 1:ndim)
end
imat = map(from_y_to_i, ymat)

imat .= from_y_to_i.(ymat)

# Estimate integral.
# Get all fevals in one shot
Expand All @@ -131,10 +142,10 @@ function vegas(func,
else
fevals = map(func, eachcol(xmat))
end
Jsf = Js .* fevals
Jsf .= Js .* fevals

integral_mc = sum(Jsf) / ncalls
variance_mc = (sum(Jsf.^2)/ncalls - integral_mc^2) / (ncalls - 1) + eps()
variance_mc = (sum(x-> x^2, Jsf)/ncalls - integral_mc^2) / (ncalls - 1) + eps()

nevals += ncalls
push!(integrals, integral_mc)
Expand All @@ -145,7 +156,9 @@ function vegas(func,
d = calculate_d(Jsf, imat, nbins, alpha)

# Update grid to make d equal in all intervals
x, delx = update_grid(x, delx, d)
xnew, delxnew = update_grid(x, delx, d)
x .= xnew
delx .= delxnew

# Calculate integral and s.d upto this point
Itot = sum(integrals ./ sigma_squares) / sum(1 ./ sigma_squares)
Expand Down Expand Up @@ -271,3 +284,4 @@ function sample_from_adaptive_grid(res, ncalls)
end
map(x -> tuple(x...), eachcol(xmat))
end

0 comments on commit 7dc3167

Please sign in to comment.