forked from eriklindernoren/ML-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprincipal_component_analysis.py
83 lines (61 loc) · 2.45 KB
/
principal_component_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from __future__ import print_function
import sys
import os
from sklearn import datasets
import matplotlib.pyplot as plt
import matplotlib.cm as cmx
import matplotlib.colors as colors
import numpy as np
from mlfromscratch.utils.data_operation import calculate_covariance_matrix
from mlfromscratch.utils.data_operation import calculate_correlation_matrix
from mlfromscratch.utils.data_manipulation import standardize
class PCA():
"""A method for doing dimensionality reduction by transforming the feature
space to a lower dimensionality, removing correlation between features and
maximizing the variance along each feature axis. This class is also used throughout
the project to plot data.
"""
def __init__(self): pass
# Fit the dataset to the number of principal components
# specified in the constructor and return the transformed dataset
def transform(self, X, n_components):
covariance = calculate_covariance_matrix(X)
# Get the eigenvalues and eigenvectors.
# (eigenvector[:,0] corresponds to eigenvalue[0])
eigenvalues, eigenvectors = np.linalg.eig(covariance)
# Sort the eigenvalues and corresponding eigenvectors from largest
# to smallest eigenvalue and select the first n_components
idx = eigenvalues.argsort()[::-1]
eigenvalues = eigenvalues[idx][:n_components]
eigenvectors = np.atleast_1d(eigenvectors[:, idx])[:, :n_components]
# Project the data onto principal components
X_transformed = X.dot(eigenvectors)
return X_transformed
def main():
# Demo of how to reduce the dimensionality of the data to two dimension
# and plot the results.
# Load the dataset
data = datasets.load_digits()
X = data.data
y = data.target
# Project the data onto the 2 primary principal components
X_trans = PCA().transform(X, 2)
x1 = X_trans[:, 0]
x2 = X_trans[:, 1]
cmap = plt.get_cmap('viridis')
colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]
class_distr = []
# Plot the different class distributions
for i, l in enumerate(np.unique(y)):
_x1 = x1[y == l]
_x2 = x2[y == l]
_y = y[y == l]
class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))
# Add a legend
plt.legend(class_distr, y, loc=1)
# Axis labels
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()
if __name__ == "__main__":
main()