Skip to content

Bare bones Python implementations of Machine Learning models and algorithms. Aims to cover everything from Data Mining techniques to Deep Learning.

License

Notifications You must be signed in to change notification settings

samc0de/ML-From-Scratch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning From Scratch

About

Python implementations of some of the fundamental Machine Learning models and algorithms from scratch.

The purpose of this project is not to produce as optimized and computationally efficient algorithms as possible but rather to present the inner workings of them in a transparent way.

Table of Contents

Installation

$ git clone https://github.com/eriklindernoren/ML-From-Scratch
$ cd ML-From-Scratch
$ python setup.py install

Example Usage

Regression

$ python mlfromscratch/supervised_learning/regression.py

Figure: Polynomial ridge regression of temperature data measured in
Linköping, Sweden 2016.

Classification

$ python mlfromscratch/supervised_learning/neural_network.py

+---------+
| ConvNet |
+---------+
Input Shape: (1, 8, 8)
+----------------------+------------+--------------+
| Layer Type           | Parameters | Output Shape |
+----------------------+------------+--------------+
| Conv2D               | 160        | (16, 8, 8)   |
| Activation (ReLU)    | 0          | (16, 8, 8)   |
| Dropout              | 0          | (16, 8, 8)   |
| BatchNormalization   | 2048       | (16, 8, 8)   |
| Conv2D               | 4640       | (32, 8, 8)   |
| Activation (ReLU)    | 0          | (32, 8, 8)   |
| Dropout              | 0          | (32, 8, 8)   |
| BatchNormalization   | 4096       | (32, 8, 8)   |
| Flatten              | 0          | (2048,)      |
| Dense                | 524544     | (256,)       |
| Activation (ReLU)    | 0          | (256,)       |
| Dropout              | 0          | (256,)       |
| BatchNormalization   | 512        | (256,)       |
| Dense                | 2570       | (10,)        |
| Activation (Softmax) | 0          | (10,)        |
+----------------------+------------+--------------+
Total Parameters: 538570

Training: 100% [------------------------------------------------------------------------] Time: 0:01:55
Accuracy: 0.987465181058

Figure: Classification of the digit dataset using CNN.

Clustering

$ python mlfromscratch/unsupervised_learning/dbscan.py

Figure: Clustering of the moons dataset using DBSCAN.

Generating Handwritten Digits

$ python mlfromscratch/unsupervised_learning/generative_adversarial_network.py

+-----------+
| Generator |
+-----------+
Input Shape: (100,)
+------------------------+------------+--------------+
| Layer Type             | Parameters | Output Shape |
+------------------------+------------+--------------+
| Dense                  | 25856      | (256,)       |
| Activation (LeakyReLU) | 0          | (256,)       |
| BatchNormalization     | 512        | (256,)       |
| Dense                  | 131584     | (512,)       |
| Activation (LeakyReLU) | 0          | (512,)       |
| BatchNormalization     | 1024       | (512,)       |
| Dense                  | 525312     | (1024,)      |
| Activation (LeakyReLU) | 0          | (1024,)      |
| BatchNormalization     | 2048       | (1024,)      |
| Dense                  | 803600     | (784,)       |
| Activation (TanH)      | 0          | (784,)       |
+------------------------+------------+--------------+
Total Parameters: 1489936

+---------------+
| Discriminator |
+---------------+
Input Shape: (784,)
+------------------------+------------+--------------+
| Layer Type             | Parameters | Output Shape |
+------------------------+------------+--------------+
| Dense                  | 401920     | (512,)       |
| Activation (LeakyReLU) | 0          | (512,)       |
| Dropout                | 0          | (512,)       |
| Dense                  | 131328     | (256,)       |
| Activation (LeakyReLU) | 0          | (256,)       |
| Dropout                | 0          | (256,)       |
| Dense                  | 514        | (2,)         |
| Activation (Softmax)   | 0          | (2,)         |
+------------------------+------------+--------------+
Total Parameters: 533762

Figure: Training progress of a MNIST Generative Adversarial Network.

Deep Reinforcement Learning

$ python mlfromscratch/reinforcement_learning/deep_q_learning.py

+----------------+
| Deep Q-Network |
+----------------+
Input Shape: (4,)
+-------------------+------------+--------------+
| Layer Type        | Parameters | Output Shape |
+-------------------+------------+--------------+
| Dense             | 320        | (64,)        |
| Activation (ReLU) | 0          | (64,)        |
| Dense             | 130        | (2,)         |
+-------------------+------------+--------------+
Total Parameters: 450

Figure: Deep Q-Network solution to the CartPole-v1 environment in OpenAI gym.

Genetic Algorithm

$ python mlfromscratch/unsupervised_learning/genetic_algorithm.py

+--------+
|   GA   |
+--------+
Description: Implementation of a Genetic Algorithm which aims to produce
the user specified target string. This implementation calculates each
candidate's fitness based on the aphabetical distance between the candidate
and the target. A candidate is selected as a parent with probabilities proportional
to the candidate's fitness. Reproduction is implemented as a single-point
crossover between pairs of parents. Mutation is done by randomly assigning
new characters with uniform probability.

Parameters
----------
Target String: 'Genetic Algorithm'
Population Size: 100
Mutation Rate: 0.05

[0 Closest Candidate: 'CJqlJguPlqzvpoJmb', Fitness: 0.00]
[1 Closest Candidate: 'MCxZxdr nlfiwwGEk', Fitness: 0.01]
[2 Closest Candidate: 'MCxZxdm nlfiwwGcx', Fitness: 0.01]
[3 Closest Candidate: 'SmdsAklMHn kBIwKn', Fitness: 0.01]
[4 Closest Candidate: '  lotneaJOasWfu Z', Fitness: 0.01]
...
[292 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
[293 Closest Candidate: 'GeneticaAlgorithm', Fitness: 1.00]
Answer: 'Genetic Algorithm'

Association Analysis

$ python mlfromscratch/unsupervised_learning/apriori.py 
+-------------+
|   Apriori   |
+-------------+
Minimum Support: 0.25
Minimum Confidence: 0.8
Transactions:
    [1, 2, 3, 4]
    [1, 2, 4]
    [1, 2]
    [2, 3, 4]
    [2, 3]
    [3, 4]
    [2, 4]
Frequent Itemsets:
    [1, 2, 3, 4, [1, 2], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 4], [2, 3, 4]]
Rules:
    1 -> 2 (support: 0.43, confidence: 1.0)
    4 -> 2 (support: 0.57, confidence: 0.8)
    [1, 4] -> 2 (support: 0.29, confidence: 1.0)

Implementations

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Contact

If there's some implementation you would like to see here or if you're just feeling social, feel free to email me or connect with me on LinkedIn.

[email protected]
LinkedIn

About

Bare bones Python implementations of Machine Learning models and algorithms. Aims to cover everything from Data Mining techniques to Deep Learning.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%