virtualenv env
source env/bin/activate
pip install requirements.txt
ipython notebook
#importing libraries for plotting
%matplotlib inline
import matplotlib.pyplot as plt
import json
import math
import numpy as np
def splitAndConvert(value,splitter = ' '):
return map(float,value.split(splitter))
def getRMSData(x,y,z):
return [ math.sqrt((x[i]*x[i])+(y[i]*y[i])+(z[i]*z[i])) for i in xrange(0,2048)]
def loadEvents():
events = []
with open('vibration.json') as data_file:
for line in data_file:
event = json.loads(line)
event['x'] = splitAndConvert(event['value']['x']);
event['y'] = splitAndConvert(event['value']['y']);
event['z'] = splitAndConvert(event['value']['z']);
event['rms'] = getRMSData(event['x'],event['y'],event['z'])
del event['value'];
events.append(event)
return events
def processPSD(events, axis):
psds = []
for event in events:
signal = np.array(event[axis], dtype=float)
fourier = np.fft.fft(signal*np.hanning(2048))
psd = 2*((fourier.real * fourier.real)/(1600*2048))
psds.append(psd)
return psds
def consolidatePSD(psds):
dArray = np.array(psds)
#print 'Data type :', dArray.dtype
#print 'Total number of elements :', dArray.size
#print 'Number of dimensions :', dArray.ndim
#print 'Shape (dimensionality) :', dArray.shape
#print 'Memory used (in bytes) :', dArray.nbytes
vibrationTable = []
for i in xrange(0,2048):
vibrationTable.append(np.sum(dArray[:,i])/len(psds))
return vibrationTable
def processData():
events = loadEvents()
table = {}
table['x'] = consolidatePSD(processPSD(events,'x'))
table['y'] = consolidatePSD(processPSD(events,'y'))
table['z'] = consolidatePSD(processPSD(events,'z'))
table['rms'] = consolidatePSD(processPSD(events,'rms'))
return table
data = loadEvents()
print "No of Events recorded :", len(data)
plt.plot (data[0]['x'], label="x")
plt.plot (data[0]['y'], label="y")
plt.plot (data[0]['z'], label="z")
plt.plot (data[0]['rms'], label="rms")
plt.legend(loc='upper left')
No of Events recorded : 334
<matplotlib.legend.Legend at 0x105f3fd50>
import numpy as np
signal = np.array(data[0]['z'], dtype=float)
plt.subplot(2,2,1)
plt.plot(signal,label="normal signal")
plt.legend(loc='lower left')
plt.subplot(2,2,2)
plt.plot(signal* np.hanning(2048),label="Signal after hanning window")
plt.legend(loc='lower left')
plt.figure()
fourier = np.fft.fft(signal*np.hanning(2048))
n = signal.size-3
timestep = 0.000625
freq = np.fft.fftfreq(n, d=timestep)
psd = (fourier.real * fourier.real)/(1600*2048)
psd = np.array(psd, dtype=float)
psd[2:n-1] = 2* psd[2:n-1]
plt.plot(freq[2:n/2], 10*np.log10(psd[2:n/2]),label="Signal after psd analysis")
plt.legend(loc='center left')
<matplotlib.legend.Legend at 0x10c782590>
data = processData()
from scipy.integrate import simps, trapz
graph = data['x'][2:n/2-1]
# Compute the area using the composite trapezoidal rule.
area = trapz(graph, dx=5)
print("trapezoidal area x=", area)
# Compute the area using the composite Simpson's rule.
area = simps(graph, dx=5)
print("Simpson x =", area)
graph = data['y'][2:n/2-1]
# Compute the area using the composite trapezoidal rule.
area = trapz(graph, dx=5)
print("trapezoidal area y=", area)
# Compute the area using the composite Simpson's rule.
area = simps(graph, dx=5)
print("Simpson y =", area)
graph = data['z'][2:n/2-1]
# Compute the area using the composite trapezoidal rule.
area = trapz(graph, dx=5)
print("trapezoidal area z=", area)
# Compute the area using the composite Simpson's rule.
area = simps(graph, dx=5)
print("Simpson z =", area)
graph = data['rms'][2:n/2-1]
# Compute the area using the composite trapezoidal rule.
area = trapz(graph, dx=5)
print("trapezoidal area rms=", area)
# Compute the area using the composite Simpson's rule.
area = simps(graph, dx=5)
print("Simpson rms =", area)
n = signal.size-3
timestep = 0.000625
freq = np.fft.fftfreq(n, d=timestep)
plt.figure(figsize=(20, 6))
plt.subplot(1,2,1)
plt.plot(freq[2:n/2-1], data['x'][2:n/2-1],label = 'x axis' )
plt.legend(loc='upper right')
plt.subplot(1,2,2)
plt.plot(freq[2:120], data['x'][2:120],label = 'x axis' )
plt.legend(loc='upper right')
plt.show()
plt.figure(figsize=(20, 6))
plt.subplot(1,2,1)
plt.plot(freq[2:n/2-1], data['y'][2:n/2-1],label = 'y axis' )
plt.legend(loc='upper right')
plt.subplot(1,2,2)
plt.plot(freq[2:120], data['y'][2:120],label = 'y axis' )
plt.legend(loc='upper right')
plt.show()
plt.figure(figsize=(20, 6))
plt.subplot(1,2,1)
plt.plot(freq[2:n/2-1], data['z'][2:n/2-1],label = 'z axis' )
plt.legend(loc='upper right')
plt.subplot(1,2,2)
plt.plot(freq[2:120], data['z'][2:120],label = 'z axis' )
plt.legend(loc='upper right')
plt.show()
plt.figure(figsize=(20, 6))
plt.subplot(1,2,1)
plt.plot(freq[2:n/2-1], data['rms'][2:n/2-1],label = 'rms axis' )
plt.legend(loc='upper right')
plt.subplot(1,2,2)
plt.plot(freq[2:120], data['rms'][2:120],label = 'rms axis' )
plt.legend(loc='upper right')
plt.show()
('trapezoidal area x=', 0.12360196506596299) ('Simpson x =', 0.12375189082977331) ('trapezoidal area y=', 0.1416781518529569) ('Simpson y =', 0.1417611851789779) ('trapezoidal area z=', 0.32075644988274854) ('Simpson z =', 0.32102093319348385) ('trapezoidal area rms=', 0.29523818043622763) ('Simpson rms =', 0.29480228984341683)