Simplified API
Breaking changes
-
Removed
dropout_categoricals
parameter fromTimeSeriesDataSet
.
Usecategorical_encoders=dict(<variable_name>=NaNLabelEncoder(add_nan=True)
) instead (#518) -
Rename parameter
allow_missings
forTimeSeriesDataSet
toallow_missing_timesteps
(#518) -
Transparent handling of transformations. Forward methods should now call two new methods (#518):
transform_output
to explicitly rescale the network outputs into the de-normalized spaceto_network_output
to create a dict-like named tuple. This allows tracing the modules with PyTorch's JIT. Onlyprediction
is still required which is the main network output.
Example:
def forward(self, x): normalized_prediction = self.module(x) prediction = self.transform_output(prediction=normalized_prediction, target_scale=x["target_scale"]) return self.to_network_output(prediction=prediction)
Added
- Improved validation of input parameters of TimeSeriesDataSet (#518)