Skip to content

Simplified API

Compare
Choose a tag to compare
@jdb78 jdb78 released this 04 Jun 17:48
d6a009d

Breaking changes

  • Removed dropout_categoricals parameter from TimeSeriesDataSet.
    Use categorical_encoders=dict(<variable_name>=NaNLabelEncoder(add_nan=True)) instead (#518)

  • Rename parameter allow_missings for TimeSeriesDataSet to allow_missing_timesteps (#518)

  • Transparent handling of transformations. Forward methods should now call two new methods (#518):

    • transform_output to explicitly rescale the network outputs into the de-normalized space
    • to_network_output to create a dict-like named tuple. This allows tracing the modules with PyTorch's JIT. Only prediction is still required which is the main network output.

    Example:

    def forward(self, x):
        normalized_prediction = self.module(x)
        prediction = self.transform_output(prediction=normalized_prediction, target_scale=x["target_scale"])
        return self.to_network_output(prediction=prediction)

Added

  • Improved validation of input parameters of TimeSeriesDataSet (#518)

Fixed

  • Fix quantile prediction for tensors on GPUs for distribution losses (#491)
  • Fix hyperparameter update for RecurrentNetwork.from_dataset method (#497)