Skip to content

Commit

Permalink
Merge pull request #12 from skumra/release/0.2.0
Browse files Browse the repository at this point in the history
Release/0.2.0
  • Loading branch information
ShirinJ authored Jul 13, 2020
2 parents 8279a15 + db3d1a4 commit 95ddfc1
Show file tree
Hide file tree
Showing 27 changed files with 860 additions and 325 deletions.
3 changes: 3 additions & 0 deletions cleanup.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#!/usr/bin/env bash

find logs/ -maxdepth 1 -type d | grep -v ^\\.$ | xargs -n 1 du -s | while read size name ; do if [ $size -le 10485 ] ; then echo rm -rf $name ; fi done
202 changes: 127 additions & 75 deletions evaluate.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
import argparse
import logging
import time

import numpy as np
import torch.utils.data

from hardware.device import get_device
from inference.post_process import post_process_output
from utils.data import get_dataset
from utils.dataset_processing import evaluation, grasp
Expand All @@ -12,26 +15,49 @@


def parse_args():
parser = argparse.ArgumentParser(description='Evaluate network')
parser = argparse.ArgumentParser(description='Evaluate networks')

# Network
parser.add_argument('--network', type=str, help='Path to saved network to evaluate')

# Dataset & Data & Training
parser.add_argument('--dataset', type=str, help='Dataset Name ("cornell" or "jaquard")')
parser.add_argument('--dataset-path', type=str, help='Path to dataset')
parser.add_argument('--use-depth', type=int, default=1, help='Use Depth image for evaluation (1/0)')
parser.add_argument('--use-rgb', type=int, default=1, help='Use RGB image for evaluation (1/0)')
parser.add_argument('--augment', action='store_true', help='Whether data augmentation should be applied')
parser.add_argument('--split', type=float, default=0.9, help='Fraction of data for training (remainder is validation)')
parser.add_argument('--network', metavar='N', type=str, nargs='+',
help='Path to saved networks to evaluate')

# Dataset
parser.add_argument('--dataset', type=str,
help='Dataset Name ("cornell" or "jaquard")')
parser.add_argument('--dataset-path', type=str,
help='Path to dataset')
parser.add_argument('--use-depth', type=int, default=1,
help='Use Depth image for evaluation (1/0)')
parser.add_argument('--use-rgb', type=int, default=1,
help='Use RGB image for evaluation (1/0)')
parser.add_argument('--augment', action='store_true',
help='Whether data augmentation should be applied')
parser.add_argument('--split', type=float, default=0.9,
help='Fraction of data for training (remainder is validation)')
parser.add_argument('--ds-shuffle', action='store_true', default=False,
help='Shuffle the dataset')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split')
parser.add_argument('--num-workers', type=int, default=8, help='Dataset workers')

parser.add_argument('--n-grasps', type=int, default=1, help='Number of grasps to consider per image')
parser.add_argument('--iou-eval', action='store_true', help='Compute success based on IoU metric.')
parser.add_argument('--jacquard-output', action='store_true', help='Jacquard-dataset style output')
parser.add_argument('--vis', action='store_true', help='Visualise the network output')
parser.add_argument('--num-workers', type=int, default=8,
help='Dataset workers')

# Evaluation
parser.add_argument('--n-grasps', type=int, default=1,
help='Number of grasps to consider per image')
parser.add_argument('--iou-threshold', type=float, default=0.25,
help='Threshold for IOU matching')
parser.add_argument('--iou-eval', action='store_true',
help='Compute success based on IoU metric.')
parser.add_argument('--jacquard-output', action='store_true',
help='Jacquard-dataset style output')

# Misc.
parser.add_argument('--vis', action='store_true',
help='Visualise the network output')
parser.add_argument('--cpu', dest='force_cpu', action='store_true', default=False,
help='Force code to run in CPU mode')
parser.add_argument('--random-seed', type=int, default=123,
help='Random seed for numpy')

args = parser.parse_args()

Expand All @@ -46,72 +72,98 @@ def parse_args():
if __name__ == '__main__':
args = parse_args()

# Load Network
net = torch.load(args.network)
device = torch.device("cuda:0")
# Get the compute device
device = get_device(args.force_cpu)

# Load Dataset
logging.info('Loading {} Dataset...'.format(args.dataset.title()))
Dataset = get_dataset(args.dataset)
test_dataset = Dataset(args.dataset_path, start=args.split, end=1.0, ds_rotate=args.ds_rotate,
random_rotate=args.augment, random_zoom=args.augment,
include_depth=args.use_depth, include_rgb=args.use_rgb)
test_dataset = Dataset(args.dataset_path,
ds_rotate=args.ds_rotate,
random_rotate=args.augment,
random_zoom=args.augment,
include_depth=args.use_depth,
include_rgb=args.use_rgb)

indices = list(range(test_dataset.length))
split = int(np.floor(args.split * test_dataset.length))
if args.ds_shuffle:
np.random.seed(args.random_seed)
np.random.shuffle(indices)
val_indices = indices[split:]
val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_indices)
logging.info('Validation size: {}'.format(len(val_indices)))

test_data = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.num_workers
num_workers=args.num_workers,
sampler=val_sampler
)
logging.info('Done')

results = {'correct': 0, 'failed': 0}

if args.jacquard_output:
jo_fn = args.network + '_jacquard_output.txt'
with open(jo_fn, 'w') as f:
pass

with torch.no_grad():
for idx, (x, y, didx, rot, zoom) in enumerate(test_data):
logging.info('Processing {}/{}'.format(idx+1, len(test_data)))
xc = x.to(device)
yc = [yi.to(device) for yi in y]
lossd = net.compute_loss(xc, yc)

q_img, ang_img, width_img = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])

if args.iou_eval:
s = evaluation.calculate_iou_match(q_img, ang_img, test_data.dataset.get_gtbb(didx, rot, zoom),
no_grasps=args.n_grasps,
grasp_width=width_img,
)
if s:
results['correct'] += 1
else:
results['failed'] += 1

if args.jacquard_output:
grasps = grasp.detect_grasps(q_img, ang_img, width_img=width_img, no_grasps=1)
with open(jo_fn, 'a') as f:
for g in grasps:
f.write(test_data.dataset.get_jname(didx) + '\n')
f.write(g.to_jacquard(scale=1024 / 300) + '\n')

if args.vis:
save_results(
rgb_img=test_data.dataset.get_rgb(didx, rot, zoom, normalise=False),
depth_img=test_data.dataset.get_depth(didx, rot, zoom),
grasp_q_img=q_img,
grasp_angle_img=ang_img,
no_grasps=args.n_grasps,
grasp_width_img=width_img
)

if args.iou_eval:
logging.info('IOU Results: %d/%d = %f' % (results['correct'],
results['correct'] + results['failed'],
results['correct'] / (results['correct'] + results['failed'])))

if args.jacquard_output:
logging.info('Jacquard output saved to {}'.format(jo_fn))
for network in args.network:
logging.info('\nEvaluating model {}'.format(network))

# Load Network
net = torch.load(network)

results = {'correct': 0, 'failed': 0}

if args.jacquard_output:
jo_fn = network + '_jacquard_output.txt'
with open(jo_fn, 'w') as f:
pass

start_time = time.time()

with torch.no_grad():
for idx, (x, y, didx, rot, zoom) in enumerate(test_data):
xc = x.to(device)
yc = [yi.to(device) for yi in y]
lossd = net.compute_loss(xc, yc)

q_img, ang_img, width_img = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])

if args.iou_eval:
s = evaluation.calculate_iou_match(q_img, ang_img, test_data.dataset.get_gtbb(didx, rot, zoom),
no_grasps=args.n_grasps,
grasp_width=width_img,
threshold=args.iou_threshold
)
if s:
results['correct'] += 1
else:
results['failed'] += 1

if args.jacquard_output:
grasps = grasp.detect_grasps(q_img, ang_img, width_img=width_img, no_grasps=1)
with open(jo_fn, 'a') as f:
for g in grasps:
f.write(test_data.dataset.get_jname(didx) + '\n')
f.write(g.to_jacquard(scale=1024 / 300) + '\n')

if args.vis:
save_results(
rgb_img=test_data.dataset.get_rgb(didx, rot, zoom, normalise=False),
depth_img=test_data.dataset.get_depth(didx, rot, zoom),
grasp_q_img=q_img,
grasp_angle_img=ang_img,
no_grasps=args.n_grasps,
grasp_width_img=width_img
)

avg_time = (time.time() - start_time) / len(test_data)
logging.info('Average evaluation time per image: {}ms'.format(avg_time * 1000))

if args.iou_eval:
logging.info('IOU Results: %d/%d = %f' % (results['correct'],
results['correct'] + results['failed'],
results['correct'] / (results['correct'] + results['failed'])))

if args.jacquard_output:
logging.info('Jacquard output saved to {}'.format(jo_fn))

del net
torch.cuda.empty_cache()
56 changes: 12 additions & 44 deletions hardware/calibrate_camera.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import logging
import os
import time

Expand All @@ -21,6 +22,7 @@ def __init__(self,
self.calib_grid_step = calib_grid_step
self.checkerboard_offset_from_tool = checkerboard_offset_from_tool

# Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
self.workspace_limits = workspace_limits

self.camera = RealSenseCamera(device_id=cam_id)
Expand Down Expand Up @@ -108,21 +110,21 @@ def _generate_grid(self):
def run(self):
# Connect to camera
self.camera.connect()
print(self.camera.intrinsics)
logging.debug(self.camera.intrinsics)

print('Collecting data...')
logging.info('Collecting data...')

calib_grid_pts = self._generate_grid()

print('Total grid points: ', calib_grid_pts.shape[0])
logging.info('Total grid points: ', calib_grid_pts.shape[0])

for tool_position in calib_grid_pts:
print('Requesting move to tool position: ', tool_position)
logging.info('Requesting move to tool position: ', tool_position)
np.save(self.tool_position, tool_position)
np.save(self.move_completed, 0)
while not np.load(self.move_completed):
time.sleep(0.1)
#wait for robot to be stable
# Wait for robot to be stable
time.sleep(2)

# Find checkerboard center
Expand Down Expand Up @@ -162,57 +164,23 @@ def run(self):
cv2.imshow('Calibration', vis)
cv2.waitKey(10)
else:
print('Checker board not found')
logging.info('Checker board not found')

self.measured_pts = np.asarray(self.measured_pts)
self.observed_pts = np.asarray(self.observed_pts)
self.observed_pix = np.asarray(self.observed_pix)

# Optimize z scale w.r.t. rigid transform error
print('Calibrating...')
logging.info('Calibrating...')
z_scale_init = 1
optim_result = optimize.minimize(self._get_rigid_transform_error, np.asarray(z_scale_init), method='Nelder-Mead')
camera_depth_offset = optim_result.x

# Save camera optimized offset and camera pose
print('Saving...')
logging.info('Saving...')
np.savetxt('saved_data/camera_depth_scale.txt', camera_depth_offset, delimiter=' ')
rmse = self._get_rigid_transform_error(camera_depth_offset)
print('RMSE: ', rmse)
logging.info('RMSE: ', rmse)
camera_pose = np.linalg.inv(self.world2camera)
np.savetxt('saved_data/camera_pose.txt', camera_pose, delimiter=' ')
print('Done.')

# ---------------------------------------------

# np.savetxt('saved_data/measured_pts.txt', self.measured_pts, delimiter=' ')
# np.savetxt('saved_data/observed_pts.txt', self.observed_pts, delimiter=' ')
# np.savetxt('saved_data/observed_pix.txt', self.observed_pix, delimiter=' ')
# measured_pts = np.loadtxt('saved_data/measured_pts.txt', delimiter=' ')
# observed_pts = np.loadtxt('saved_data/observed_pts.txt', delimiter=' ')
# observed_pix = np.loadtxt('saved_data/observed_pix.txt', delimiter=' ')

# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# ax.scatter(measured_pts[:,0],measured_pts[:,1],measured_pts[:,2], c='blue')

# print(camera_depth_offset)
# R, t = self._get_rigid_transform(np.asarray(measured_pts), np.asarray(observed_pts))
# t.shape = (3,1)
# camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# camera2robot = np.linalg.inv(camera_pose)
# t_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(observed_pts)) + np.tile(camera2robot[0:3,3:],(1,observed_pts.shape[0])))

# ax.scatter(t_observed_pts[:,0],t_observed_pts[:,1],t_observed_pts[:,2], c='red')

# new_observed_pts = observed_pts.copy()
# new_observed_pts[:,2] = new_observed_pts[:,2] * camera_depth_offset[0]
# R, t = self._get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts))
# t.shape = (3,1)
# camera_pose = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0)
# camera2robot = np.linalg.inv(camera_pose)
# t_new_observed_pts = np.transpose(np.dot(camera2robot[0:3,0:3],np.transpose(new_observed_pts)) + np.tile(camera2robot[0:3,3:],(1,new_observed_pts.shape[0])))

# ax.scatter(t_new_observed_pts[:,0],t_new_observed_pts[:,1],t_new_observed_pts[:,2], c='green')

# plt.show()
logging.info('Done.')
4 changes: 1 addition & 3 deletions hardware/camera.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@ def __init__(self,
width=640,
height=480,
fps=6):

self.device_id = device_id
self.width = width
self.height = height
Expand Down Expand Up @@ -53,7 +52,7 @@ def get_image_bundle(self):

depth_image = np.expand_dims(depth_image, axis=2)

return{
return {
'rgb': color_image,
'aligned_depth': depth_image,
}
Expand All @@ -79,4 +78,3 @@ def plot_image_bundle(self):
cam.connect()
while True:
cam.plot_image_bundle()

19 changes: 19 additions & 0 deletions hardware/device.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
import logging

import torch

logging.basicConfig(level=logging.INFO)


def get_device(force_cpu):
# Check if CUDA can be used
if torch.cuda.is_available() and not force_cpu:
logging.info("CUDA detected. Running with GPU acceleration.")
device = torch.device("cuda")
elif force_cpu:
logging.info("CUDA detected, but overriding with option '--cpu'. Running with only CPU.")
device = torch.device("cpu")
else:
logging.info("CUDA is *NOT* detected. Running with only CPU.")
device = torch.device("cpu")
return device
Loading

0 comments on commit 95ddfc1

Please sign in to comment.