Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updating smileih5.py #274

Merged
merged 10 commits into from
Jan 29, 2024
13 changes: 13 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,19 @@ current master
--------------


**Highlights**

* Add support to read the `Smilei` PIC (https://smileipic.github.io/Smilei/) data format in both cartesian and azimuthal geometry. Postpic uses a build in azimuthal mode expansion very similar to the one used for fbpic.
* To read smilei data, postpic only relies on the hdf5 package and not smilei's happi module for data access. Paricle ID's (ParticleTracking as described by smilei) can be read directly from the hdf5. Happi requires to sort the IDs and write a new hdf5, which can be twice as big as the original dumps. Using postpic's access this step will be skipped and thus access is much faster (but by default with unordered particle IDs as in any other code).


**Incompatible adjustments to previous version**



**Other improvements and new features**


v0.5
----

Expand Down
170 changes: 167 additions & 3 deletions postpic/datareader/smileih5.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
#
# Stephan Kuschel, 2023
# Carolin Goll, 2023

# Vinith Samson J, 2024

from __future__ import absolute_import, division, print_function, unicode_literals

Expand All @@ -26,6 +26,10 @@
import os.path
import h5py
import glob
import numpy as np
from .. import helper
from ..helper_fft import fft
import re

__all__ = ['SmileiReader', 'SmileiSeries']

Expand Down Expand Up @@ -114,15 +118,174 @@ def __init__(self, h5file, iteration=None):

if iteration is None:
self._iteration = int(list(self._h5['data'].keys())[0])
elif iteration not in [int(i) for i in list(self._h5['data'].keys())]:
raise IOError("Iteration {} is in valid".format(iteration))
else:
self._iteration = int(iteration)

self._data = self._h5['/data/{:010d}/'.format(self._iteration)]
self.attrs = self._data.attrs

@staticmethod
def _modeexpansion_naiv(rawdata, theta=0):
'''
This method performes mode expansion of the raw data (an array consisting of complex
numbers) for both single and multiple theta vaues.

The output array has the shape (No.of theta, Nx, Nr)

Args:
rawdata : numpy array
The elements of this array are complex numbers, this got structured from the
raw data dumped in h5 file through getExpanded(key, theta) function.

theta : float/integer OR list of floats/integer

Output F_total is an array of real numbers which has shape (Np.of theta, Nx, Nr),
this F_total is the real value summation of the fourier series.
'''
if np.array(theta).shape is ():
theta = [theta]

array_list = []

(Nm, Nx, Nr) = rawdata.shape
F_total = np.zeros((Nx, Nr))
mode = [m for m in range(0, Nm)]
for t in theta:

for m in mode:
F_total += np.real(rawdata[m])*np.cos(m*t)+np.imag(rawdata[m])*np.sin(m*t)
array_list.append(F_total)

mod_F_total = np.stack(array_list, axis=0)
return mod_F_total

# --- Level 0 methods ---

def _listAMmodes(self):
'''
This method is used to get the list of
[prefix of field names, No.of AM modes] available in the dump.
And it works only for AM mode technique.
'''
strings = np.array(self._data)
mask = np.array(["_mode_" in s for s in strings])
arr = strings[mask]
max_suffix = float('-inf')
max_suffix_string = None
prefix_list = []

for i in arr:
prefix, suffix = i.split('_mode_')
suffix_int = int(suffix)
if suffix_int > max_suffix:
max_suffix = suffix_int
max_suffix_string = i
prefix_list.append(prefix)

availModes = [i for i in range(0, int(max_suffix_string[-1])+1)]

# [field names prefix, available AM modes]
return [prefix_list, availModes]

# --- Level 1 methods ---

def _getExpanded(self, key, theta=0):
'''
_getExpanded() method converts the raw data real number array from h5file into
a complex number array (This convertion is important while performing mode expansion)
and finally returns the mode expanded array.

This method takes input from the h5files dump which has the following format,
field array = [[real_1,imag_1,real_2,image_2,.....],...]
The shape of this field array is (Nx, 2x Nr)
After real->complex conversion, the field array shape takes the form (Nx, Nr)
This final array is fed into _modeexpansion_naiv method.
'''
array_list = []
modes = self._listAMmodes()[-1]
for mode in modes:

field_name = key+"_mode_"+str(mode)
field_array = np.array(self._data[field_name])
field_array_shape = field_array.shape
reshaped_array = field_array.reshape(field_array_shape[0], field_array_shape[1]//2, 2)
complex_array = reshaped_array[:, :, 0] + 1j * reshaped_array[:, :, 1]
array_list.append(complex_array)

# Modified array of shape (Nmodes, Nx, Nr)
mod_complex_data = np.stack(array_list, axis=0)
factor = self._data["{}_mode_0".format(key)].attrs['unitSI']
return SmileiReader._modeexpansion_naiv(rawdata=mod_complex_data, theta=theta)*factor

def data(self, key, **kwargs):
'''
should work with any key, that contains data, thus on every hdf5.Dataset,
but not on hdf5.Group. Will extract the data, convert it to SI and return it
as a numpy array. Constant records will be detected and converted to
a numpy array containing a single value only.

If the key is in AM mode dump, then it performs the mode expansion.
The theta values for which we need to perform
mode expansion can be given as keyword args.

Example:
Data = data(key='El', theta=[0,pi/2,pi])
Now the Data will array have the shape (3, Nx, Nr)
'''

# checking whether the key is in AM mode dump
if key in self._listAMmodes()[0]:
return self._getExpanded(key=key, **kwargs)
else:
record = self._data[key]

if "value" in record.attrs:
# constant data (a single int or float)
ret = np.float64(record.attrs['value']) * record.attrs['unitSI']
else:
# array data
ret = np.float64(record[()]) * record.attrs['unitSI']
return ret

# To get the offsets of the grid.
def gridoffset(self, key, axis):
axid = helper.axesidentify[axis]

if axid == 91: # theta
return 0
elif key in self._listAMmodes()[0] and axid in [0, 90]:
key = "{}_mode_0".format(key)
axid = int(axid/90)
return super(SmileiReader, self).gridoffset(key=key, axis=axid)
else:
return super(SmileiReader, self).gridoffset(key, axis)

# To get the grid spacing.
def gridspacing(self, key, axis):
axid = helper.axesidentify[axis]

if key in self._listAMmodes()[0] and axid in [0, 90]:
key = "{}_mode_0".format(key)
axid = int(axid/90)
return super(SmileiReader, self).gridspacing(key=key, axis=axid)
else:
return super(SmileiReader, self).gridspacing(key, axis)

# To get the grid points
def gridpoints(self, key, axis):
axid = helper.axesidentify[axis]

if key in self._listAMmodes()[0]:
key = "{}_mode_0".format(key)
(Nx, Nr) = self._data[key].shape
Nr = Nr/2
axid = int(axid/90)
return (Nx, Nr)[axid]
else:
return super(SmileiReader, self).gridpoints(key=key, axis=axis)

# --- Level 2 methods ---

def _keyE(self, component, **kwargs):
Expand All @@ -137,8 +300,9 @@ def _keyB(self, component, **kwargs):

def _simgridkeys(self):
# Smilei deviates from openPMD standard: Ex instead of E/x
return ['Ex', 'Ey', 'Ez',
'Bx', 'By', 'Bz']
return ['Ex', 'Ey', 'Ez', 'Er', 'El', 'Et',
'Bx', 'By', 'Bz', 'Br', 'Bl', 'Bt',
'Jx', 'Jy', 'Jz', 'Jr', 'Jl', 'Jt', 'Rho']

def getderived(self):
'''
Expand Down
Loading