Skip to content

Commit

Permalink
refactor: move around files, update index
Browse files Browse the repository at this point in the history
  • Loading branch information
TOTBWF authored and plt-amy committed May 30, 2023
1 parent 754e435 commit cb0e189
Show file tree
Hide file tree
Showing 3 changed files with 11 additions and 8 deletions.
14 changes: 7 additions & 7 deletions src/Cat/Displayed/Adjoint.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ open import Cat.Prelude

import Cat.Reasoning
import Cat.Displayed.Reasoning
import Cat.Displayed.Functor.VerticalReasoning
import Cat.Displayed.Functor.Vertical.Reasoning
```
-->

Expand Down Expand Up @@ -158,8 +158,8 @@ allows us to keep morphisms displayed over the same base.
```agda
module _ {L : Vertical-functor ℰ ℱ} {R : Vertical-functor ℱ ℰ} (adj : L ⊣↓ R) where
private
module L = Cat.Displayed.Functor.VerticalReasoning L
module R = Cat.Displayed.Functor.VerticalReasoning R
module L = Cat.Displayed.Functor.Vertical.Reasoning L
module R = Cat.Displayed.Functor.Vertical.Reasoning R
open _⊣↓_ adj
```
-->
Expand Down Expand Up @@ -258,8 +258,8 @@ If $L \dashv R$ is a vertical adjunction, then $R$ is a fibred functor.
is-vertical-fibred R
Vert-right-adjoint-fibred {L = L} {R = R} adj {f = f} f′ cart = R-cart where
open is-cartesian
module L = Cat.Displayed.Functor.VerticalReasoning L
module R = Cat.Displayed.Functor.VerticalReasoning R
module L = Cat.Displayed.Functor.Vertical.Reasoning L
module R = Cat.Displayed.Functor.Vertical.Reasoning R
```

Let $f : \cC(x,y)$ and $f' : \cF(x', y')_{f}$ be a cartesian morphism.
Expand Down Expand Up @@ -333,8 +333,8 @@ Dually, vertical left adjoints are opfibred.
```agda
Vert-left-adjoint-opfibred {L = L} {R = R} adj {f = f} f′ cocart = L-cocart where
open is-cocartesian
module L = Cat.Displayed.Functor.VerticalReasoning L
module R = Cat.Displayed.Functor.VerticalReasoning R
module L = Cat.Displayed.Functor.Vertical.Reasoning L
module R = Cat.Displayed.Functor.Vertical.Reasoning R

L-cocart : is-cocartesian ℱ f (L.F₁′ f′)
L-cocart .universal m h′ =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ import Cat.Displayed.Reasoning
-->

```agda
module Cat.Displayed.Functor.VerticalReasoning
module Cat.Displayed.Functor.Vertical.Reasoning
{ob ℓb oe ℓe of ℓf}
{B : Precategory ob ℓb}
{ℰ : Displayed B oe ℓe} {ℱ : Displayed B of ℓf}
Expand Down
3 changes: 3 additions & 0 deletions src/index.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -657,6 +657,9 @@ their higher groupoid structure:
open import Cat.Displayed.Path
open import Cat.Displayed.Functor
open import Cat.Displayed.Adjoint

open import Cat.Displayed.Functor.Vertical.Reasoning
-- Reasoning Combinators for vertical functors.
```

### Cartesian fibrations
Expand Down

0 comments on commit cb0e189

Please sign in to comment.