Skip to content

tiger1933/RetinaNet_Tensorflow_Rotation

 
 

Repository files navigation

Focal Loss for Dense Rotation Object Detection

Abstract

This repo is based on Focal Loss for Dense Object Detection, and it is completed by YangXue.

We also recommend a tensorflow-based rotation detection benchmark, which is led by YangXue.

Performance

DOTA1.0

Model Backbone Training data Val data mAP Model Link Anchor Reg. Loss Angle Range lr schd Data Augmentation GPU Image/GPU Configs
RetinaNet ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test 63.18 model H smooth L1 90 1x No 1X GeForce RTX 2080 Ti 1 cfgs_res50_dota_v4.py
RetinaNet ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test 64.10 - H smooth L1 180 1x No 1X GeForce RTX 2080 Ti 1 cfgs_res50_dota_v15.py
RetinaNet ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test 62.76 model R smooth L1 90 1x No 1X GeForce RTX 2080 Ti 1 cfgs_res50_dota_v1.py
RetinaNet ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test 68.65 - R iou-smooth L1 90 1x No 1X GeForce RTX 2080 Ti 1 cfgs_res50_dota_v5.py

Notice:
Due to the improvement of the code, the performance of this repo is gradually improving, so the experimental results in configuration files are for reference only.
This repo has basically stopped updating, please refer to new repo for the latest progress.

Visualization

1

2

My Development Environment

docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、opencv(cv2)
4、tfplot 0.2.0 (optional)
5、tensorflow 1.13

IoU-smooth L1 Loss

SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects (ICCV2019)

1

2

Download Model

Pretrain weights

1、Please download resnet50_v1, resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone, refer to gluon2TF.

Compile

cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)

cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace

Train

1、If you want to train your own data, please note:

(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/label_dict.py     
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord.py 

2、Make tfrecord
For DOTA dataset:

cd $PATH_ROOT\data\io\DOTA
python data_crop.py
cd $PATH_ROOT/data/io/  
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/' 
                                   --xml_dir='labeltxt'
                                   --image_dir='images'
                                   --save_name='train' 
                                   --img_format='.png' 
                                   --dataset='DOTA'

3、Multi-gpu train

cd $PATH_ROOT/tools
python multi_gpu_train.py

Test

cd $PATH_ROOT/tools
python test_dota.py --test_dir='/PATH/TO/IMAGES/'  
                    --gpus=0,1,2,3,4,5,6,7          

Notice: In order to set the breakpoint conveniently, the read and write mode of the file is' a+'. If the model of the same #VERSION needs to be tested again, the original test results need to be deleted.

Tensorboard

cd $PATH_ROOT/output/summary
tensorboard --logdir=.

3

4

Reference

1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet

About

Focal Loss for Dense Rotation Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.4%
  • Cuda 2.5%
  • Other 0.1%