\--CNN_eddy_detection
\--static # All python scripts
\--notebooks # All jupyter notebooks
\--test #test notebooks or scripts
-- interpolator.sh # interpolator slurm script
-- README.md
-- requirements.txt # Required dependencies to run this program
-- .gitignore
# Clone the repo.
git clone https://github.com/LegoCreation/CNN_eddy_detection
cd CNN_eddy_detection
# Create environment to work in and activate it
$ conda create -n eddy-tracking python=3.8
$ conda activate eddy-tracking
# use pip to install PyEddyTracker
$ pip install pyEddyTracker
# manually install a couple of dependencies
$ pip install dask
$ pip install xarray
$ pip install tensorflow
# Create a Kernel for jupyter notebook
$ mamba install ipykernel
$ python -m ipykernel install --user --name eddy-tracking --display-name="eddy-tracking"
As notebooks are updated frequently and contain more scratch work, hence might create confusion. However, going through the notebook once is recommended for gaining better insight of overall process.