Skip to content

vskh/burn-mnist-explore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Burn MNIST exploration

Use Burn to train a simplistic 768-16-16-10 DNN mentioned in 3blue1brown Neural networks series on MNIST dataset and see what happens.

(Just following the Burn book really)

Results

Reached 91.9% accuracy :)

======================== Learner Summary ========================

Model:

Model {
  activation: Relu
  hidden1: Linear {d_input: 768, d_output: 16, bias: true, params: 12304}
  hidden2: Linear {d_input: 16, d_output: 10, bias: true, params: 170}
  output: Linear {d_input: 10, d_output: 10, bias: true, params: 110}
  params: 12584
}

Total Epochs: 10

Split Metric Min. Epoch Max. Epoch
Train Accuracy 53.035 1 91.817 10
Train Loss 0.285 10 1.536 1
Valid Accuracy 78.310 1 91.940 10
Valid Loss 0.282 10 0.897 1

About

Exploring Burn for machine learning in Rust

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages