Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/wakes on gpu #153

Open
wants to merge 13 commits into
base: main
Choose a base branch
from
145 changes: 145 additions & 0 deletions examples/slicer/002b_example_slicer_gpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
import xtrack as xt
import xpart as xp
import xfields as xf

import numpy as np

import xobjects as xo
context = xo.ContextCupy(device=3)
#context = xo.ContextCpu()

line = xt.Line.from_json(
'../../../xtrack/test_data/hllhc15_thick/lhc_thick_with_knobs.json')
line.build_tracker(_context=context)

line.vars['vrf400'] = 16

p = xp.generate_matched_gaussian_bunch(
line=line,
num_particles=int(1e5),
nemitt_x=2e-6,
nemitt_y=2.5e-6,
sigma_z=0.07)

slicer = xf.UniformBinSlicer(zeta_range=(-999, +999), num_slices=1, _context=context)

slicer.slice(p)

cov_matrix = np.zeros((6, 6))

for ii, vii in enumerate(['x', 'px', 'y', 'py', 'zeta', 'delta']):
for jj, vjj in enumerate(['x', 'px', 'y', 'py', 'zeta', 'delta']):
if ii <= jj:
cov_matrix[ii, jj] = slicer.cov(vii, vjj)[0]
else:
cov_matrix[ii, jj] = cov_matrix[jj, ii]

assert np.allclose(np.sqrt(cov_matrix[0, 0]), np.std(p.x), atol=0, rtol=1e-6)

tw = line.twiss()
Sig = cov_matrix

S = xt.linear_normal_form.S

eival, eivec = np.linalg.eig(Sig @ S)

# Keep only one from each complex conjugate pair
eival_list = []
eivec_list = []
for ii in range(6):
if ii == 0:
eival_list.append(eival[ii])
eivec_list.append(eivec[:, ii])
continue
found_conj = False
for jj in range(len(eival_list)):
if np.allclose(eival[ii], np.conj(eival_list[jj]), rtol=0, atol=1e-14):
found_conj = True
break
if not found_conj:
eival_list.append(eival[ii])
eivec_list.append(eivec[:, ii])

assert len(eival_list) == 3

# Find longitudinal mode
norm = np.linalg.norm
i_long = 0
if norm(eivec_list[1][5:6]) > norm(eivec_list[i_long][5:6]):
i_long = 1
if norm(eivec_list[2][5:6]) > norm(eivec_list[i_long][5:6]):
i_long = 2

eival_zeta = eival_list[i_long]
eivec_zeta = eivec_list[i_long]

# Find vertical mode
eival_list.pop(i_long)
eivec_list.pop(i_long)
if norm(eivec_list[0][3:4]) > norm(eivec_list[1][3:4]):
i_vert = 0
else:
i_vert = 1

eival_y = eival_list[i_vert]
eivec_y = eivec_list[i_vert]

# Find horizontal mode
eival_list.pop(i_vert)
eivec_list.pop(i_vert)
eival_x = eival_list[0]
eivec_x = eivec_list[0]

nemitt_x = eival_x.imag * tw.gamma0 * tw.beta0
nemitt_y = eival_y.imag * tw.gamma0 * tw.beta0
nemitt_zeta = eival_zeta.imag * tw.gamma0 * tw.beta0


print(f'{nemitt_x=} {nemitt_y=} {nemitt_zeta=}')
print('\n')

dummy_lam = np.diag([
np.exp(-1j*np.pi/3), np.exp(+1j*np.pi/3),
np.exp(-1j*np.pi/4), np.exp(+1j*np.pi/4),
np.exp(-1j*np.pi/5), np.exp(+1j*np.pi/5),
])

dummy_R = eivec @ dummy_lam @ np.linalg.inv(eivec)

dummy_line = xt.Line(elements=[xt.Drift(length=1e-12)])
p_dummy = line.build_particles(x=0)

tw_from_sigmas = dummy_line.twiss(
particle_on_co=p_dummy,
R_matrix=dummy_R,
compute_chromatic_properties=False)

print('betx/bety')
print(f'betx (from line) = {tw.betx[0]}')
print(f'betx (from sigmas) = {tw_from_sigmas.betx[0]}')
print(f'bety (from line) = {tw.bety[0]}')
print(f'bety (from sigmas) = {tw_from_sigmas.bety[0]}')
print()
print('alfx/alfy')
print(f'alfx (from line) = {tw.alfx[0]}')
print(f'alfx (from sigmas) = {tw_from_sigmas.alfx[0]}')
print(f'alfy (from line) = {tw.alfy[0]}')
print(f'alfy (from sigmas) = {tw_from_sigmas.alfy[0]}')
print()
print('dx/dy')
print(f'dx (from line) = {tw.dx[0]}')
print(f'dx (from sigmas) = {tw_from_sigmas.dx[0]}')
print(f'dy (from line) = {tw.dy[0]}')
print(f'dy (from sigmas) = {tw_from_sigmas.dy[0]}')
print()
print('coupled betas')
print(f'betx2 (from line) = {tw.betx2[0]}')
print(f'betx2 (from sigmas) = {tw_from_sigmas.betx2[0]}')
print(f'bety2 (from line) = {tw.bety2[0]}')
print(f'bety2 (from sigmas) = {tw_from_sigmas.bety2[0]}')


# - make it work with one slice
# - populate a Sigma matrix
# - p.get_sigma_matrix()
# - p.get_statistical_
89 changes: 89 additions & 0 deletions examples/slicer/005b_moment_profile_gpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import xfields as xf
import xtrack as xt
import xobjects as xo
import xwakes as xw
from xfields.slicers.compressed_profile import CompressedProfile

import numpy as np
import matplotlib.pyplot as plt

import xobjects as xo
context = xo.ContextCupy(device=3)

# base coordinates
zeta_coord = np.random.normal(loc=5e-3, scale=5e-2,
size=100_000)
bunch_spacing_zeta = 10
num_bunches = 3

# n_bunches bunches with n_macroparticles each with different coordinates
particles = xt.Particles(
zeta=np.concatenate([zeta_coord*(bid + 1) - bunch_spacing_zeta*bid
for bid in range(num_bunches)]),
_context=context
)

# dummy filling scheme
filling_scheme = np.ones(num_bunches, dtype=int)
bunch_selection = np.arange(num_bunches, dtype=int)

zeta_range = (-1, 1)

# we create a compressed profile object and a slicer object. The slicer object
# is used to compute the moments of the beam at the slices, which are then
# inserted in the profile
moments = ['x', 'y', 'px', 'py', 'num_particles']

compressed_profile = CompressedProfile(
moments=moments,
zeta_range=zeta_range,
num_slices=20,
bunch_spacing_zeta=bunch_spacing_zeta,
num_periods=num_bunches,
num_turns=1,
circumference=bunch_spacing_zeta*len(filling_scheme),
_context=context)


slicer = xf.UniformBinSlicer(
zeta_range=zeta_range,
num_slices=compressed_profile.num_slices,
filling_scheme=filling_scheme,
bunch_selection=bunch_selection,
bunch_spacing_zeta=bunch_spacing_zeta,
moments='all',
_context=context
)

print('a')

slicer.track(particles)

print('b')

for i_bunch in range(num_bunches):
dict_moments = {
'num_particles': slicer.num_particles[i_bunch, :],
}

for moment in moments:
if moment == 'num_particles':
continue
dict_moments[moment] = slicer.mean(moment)[i_bunch, :]

compressed_profile.set_moments(i_turn=0, i_source=bunch_selection[i_bunch],
moments=dict_moments)

print('c')

long_profile = compressed_profile.get_moment_profile(
moment_name='num_particles', i_turn=0)

long_profile_x = long_profile[0].get()
long_profile_y = long_profile[1].get()

plt.figure(321)
plt.plot(long_profile_x, long_profile_y/np.sum(long_profile_y))
plt.xlabel('zeta [m]')
plt.ylabel('longitudinal profile [a.u.]')
plt.show()
59 changes: 59 additions & 0 deletions examples/slicer/005d_moment_profile_from_wake_gpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import xfields as xf
import xtrack as xt
import xobjects as xo
import xwakes as xw

import numpy as np
import matplotlib.pyplot as plt

import xobjects as xo
context = xo.ContextCupy(device=3)

# base coordinates
zeta_coord = np.random.normal(loc=5e-3, scale=5e-2,
size=100_000)
bunch_spacing_zeta = 10
num_bunches = 3

# n_bunches bunches with n_macroparticles each with different coordinates
particles = xt.Particles(
zeta=np.concatenate([zeta_coord*(bid + 1) - bunch_spacing_zeta*bid
for bid in range(num_bunches)]),
_context=context,
)
# dummy filling scheme
filling_scheme = np.ones(num_bunches, dtype=int)
bunch_selection = np.arange(num_bunches, dtype=int)

# wake from which the compressed profile is taken
wf = xw.WakeResonator(
r=3e8,
q=1e7,
f_r=1e3,
kind='dipolar_x',
)

wf.configure_for_tracking(
zeta_range=(-1, 1),
num_slices=20,
bunch_spacing_zeta=bunch_spacing_zeta,
filling_scheme=filling_scheme,
bunch_selection=bunch_selection,
num_turns=1,
circumference=bunch_spacing_zeta*len(filling_scheme),
_context=context,
)

wf.track(particles)

long_profile = wf._wake_tracker.moments_data.get_moment_profile(
moment_name='num_particles', i_turn=0)

long_profile_x = long_profile[0].get()
long_profile_y = long_profile[1].get()

plt.figure(321)
plt.plot(long_profile_x, long_profile_y/np.sum(long_profile_y))
plt.xlabel('zeta [m]')
plt.ylabel('longitudinal profile [a.u.]')
plt.show()
40 changes: 22 additions & 18 deletions tests/test_compressed_profile_interp_result.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,10 @@
from xfields.slicers import CompressedProfile
from xobjects.test_helpers import for_all_test_contexts
import xtrack as xt
import xobjects as xo


def test_compressed_profile_interp_result():
@for_all_test_contexts
def test_compressed_profile_interp_result(test_context):
# Machine settings
moments = ['result']
zeta_range = (0, 1)
Expand All @@ -25,30 +26,32 @@ def test_compressed_profile_interp_result():
bunch_spacing_zeta=bunch_spacing_zeta,
num_periods=num_bunches,
num_turns=num_turns,
circumference=circumference
circumference=circumference,
_context=test_context
)

num_parts = 100

interpolated_result = np.zeros(num_parts, dtype=float)
i_slice_particles = np.linspace(0, num_slices - 1, num_parts, dtype=int)
interpolated_result = test_context.zeros(num_parts, dtype=float)
i_slice_particles = test_context.nplike_lib.linspace(0, num_slices - 1, num_parts, dtype=int)

result_parts = np.zeros(num_parts)
result_parts = test_context.zeros(num_parts)

def func(z, i):
return z + circumference * i

for i_turn in range(num_turns):
moments = {
'result': func(np.linspace(zeta_range[0] + dz / 2,
'result': comp_prof._arr2ctx(
func(np.linspace(zeta_range[0] + dz / 2,
zeta_range[1] - dz / 2,
num_slices), i_turn)
num_slices), i_turn))
}

comp_prof.set_moments(moments=moments,
i_turn=i_turn, i_source=0)

result_parts += func(i_slice_particles * dz + dz / 2, i_turn)
result_parts += comp_prof._arr2ctx(func(i_slice_particles * dz + dz / 2, i_turn))

particles = xt.Particles(
mass0=xt.PROTON_MASS_EV,
Expand All @@ -60,16 +63,17 @@ def func(z, i):
zeta=np.zeros(num_parts),
delta=np.zeros(num_parts),
weight=np.ones(num_parts),
_context=test_context
)

comp_prof._interp_result(particles=particles,
data_shape_0=comp_prof.data.shape[0],
data_shape_1=comp_prof.data.shape[1],
data_shape_2=comp_prof.data.shape[2],
data=comp_prof.data,
i_slot_particles=np.zeros(num_parts, dtype=int),
i_slice_particles=i_slice_particles,
out=interpolated_result
)
data_shape_0=comp_prof.data.shape[0],
data_shape_1=comp_prof.data.shape[1],
data_shape_2=comp_prof.data.shape[2],
data=comp_prof.data,
i_slot_particles=test_context.nplike_lib.zeros(num_parts, dtype=int),
i_slice_particles=i_slice_particles,
out=interpolated_result
)

assert np.allclose(result_parts, interpolated_result)
xo.assert_allclose(result_parts, interpolated_result)
Loading