This repository contains the code for our NeurIPS 2023 accepted Spotlight paper, Adversarial Robustness in Graph Neural Networks: A Hamiltonian Approach.
To install the required dependencies, refer to the environment.yaml file
For the non-targeted GIA in Table 2, first generate the adversarial graphs , for Cora dataset run the following command:
#pgd
python -u gnn_misg.py --dataset 'cora' --inductive --eval_robo --eval_attack 'pgd' --n_inject_max 60 --n_edge_max 20 --grb_mode 'full' --runs 1 --disguise_coe 0 --use_ln 0 --grb_split
#tdgia
python -u gnn_misg.py --dataset 'cora' --inductive --eval_robo --eval_attack 'seqgia' --n_inject_max 60 --n_edge_max 20 --grb_mode 'full' --runs 1 --disguise_coe 0 --use_ln 0 --injection 'tdgia' --grb_split
cp atkg/cora_seqgia.pt atkg/cora_tdgia.pt
#metagia
python -u gnn_misg.py --dataset 'cora' --inductive --eval_robo --eval_attack 'seqgia' --injection 'meta' --n_inject_max 60 --n_edge_max 20 --grb_mode 'full' --runs 1 --disguise_coe 0 --use_ln 0 --grb_split
cp atkg/cora_seqgia.pt atkg/cora_metagia.pt
For other datasets in ['citeseer','pubmed','coauthorcs'], please change the value of --n_inject_max --n_edge_max according to our paper
To evaluate the robustness of the HANG models, run the following command:
# --function: the type of HANG model, 'hang' for HANG and 'hangquad' for HANG-quad
# --eval_attack : the type of attack, 'pgd' for PGD, 'tdgia' for TDGIA, 'metagia' for METAGIA
#HANG
python gnn_misg_pde.py --dataset cora --inductive --eval_robo --eval_attack pgd --n_inject_max 60 --n_edge_max 20 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hang --gpu 3 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
python gnn_misg_pde.py --dataset citeseer --inductive --eval_robo --eval_attack metagia --n_inject_max 90 --n_edge_max 10 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hang --gpu 3 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
python gnn_misg_pde.py --dataset pubmed --inductive --eval_robo --eval_attack pgd --n_inject_max 200 --n_edge_max 100 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hang --gpu 2 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
python gnn_misg_pde.py --dataset coauthorcs --inductive --eval_robo --eval_attack pgd --n_inject_max 300 --n_edge_max 150 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hang --gpu 2 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
#HANG-quad
python gnn_misg_pde.py --dataset cora --inductive --eval_robo --eval_attack pgd --n_inject_max 60 --n_edge_max 20 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hangquad --gpu 3 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
python gnn_misg_pde.py --dataset citeseer --inductive --eval_robo --eval_attack metagia --n_inject_max 90 --n_edge_max 10 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hangquad --gpu 3 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
python gnn_misg_pde.py --dataset pubmed --inductive --eval_robo --eval_attack pgd --n_inject_max 200 --n_edge_max 100 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hangquad --gpu 3 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
python gnn_misg_pde.py --dataset coauthorcs --inductive --eval_robo --eval_attack pgd --n_inject_max 300 --n_edge_max 150 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --model graphcon --time 3 --method euler --function hangquad --gpu 3 --hidden_dim 128 --eval_robo_blk --step_size 1 --input_dropout 0.4 --batch_norm --add_source --grb_split
For the targeted GIA in Table 3, first generate the adversarial graphs , for Computers dataset run the following command:
#pgd
python -u gnn_misg.py --dataset 'computers' --inductive --eval_robo --eval_attack 'pgd' --n_inject_max 100 --n_edge_max 150 --grb_mode 'full' --runs 1 --disguise_coe 0 --use_ln 0 --grb_split --eval_target
#tdgia
python -u gnn_misg.py --dataset 'computers' --inductive --eval_robo --eval_attack 'seqgia' --n_inject_max 100 --n_edge_max 150 --grb_mode 'full' --runs 1 --disguise_coe 0 --use_ln 0 --injection 'tdgia' --grb_split --eval_target
cp atkg/computers_seqgia_target.pt atkg/computers_tdgia_target.pt
#metagia
python -u gnn_misg.py --dataset 'computers' --inductive --eval_robo --eval_attack 'seqgia' --injection 'meta' --n_inject_max 100 --n_edge_max 150 --grb_mode 'full' --runs 1 --disguise_coe 0 --use_ln 0 --grb_split --eval_target
cp atkg/computers_seqgia_target.pt atkg/computers_metagia_target.pt
For ogbn-arxiv datasets, please change the value of --n_inject_max --n_edge_max according to our paper
To evaluate the robustness of the HANG models, run the following command:
#HANG
python gnn_misg_pde.py --dataset computers --inductive --eval_robo --eval_attack tdgia --n_inject_max 100 --n_edge_max 150 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --eval_target --eval_robo_blk --model graphcon --method euler --function hang --gpu 0 --hidden_dim 128 --step_size 1 --input_dropout 0.2 --dropout 0.4 --eval_target --batch_norm --block constant --add_source --time 3
#HANG-quad
python gnn_misg_pde.py --dataset computers --inductive --eval_robo --eval_attack tdgia --n_inject_max 100 --n_edge_max 150 --grb_mode full --runs 1 --disguise_coe 0 --use_ln 0 --eval_target --eval_robo_blk --model graphcon --method euler --function hangquad --gpu 0 --hidden_dim 128 --step_size 1 --input_dropout 0.2 --dropout 0.4 --eval_target --batch_norm --block constant --add_source --time 3
For the Metattack in Table 4, run the following command:
#HANG-quad
python run_metattack_rate.py --dataset polblogs --function hangquad --block constant --lr 0.005 --dropout 0.4 --input_dropout 0.4 --batch_norm --time 8 --hidden_dim 64 --step_size 1 --runtime 10 --add_source --batch_norm --gpu 0 --epochs 800 --patience 200
#HANG
python run_metattack_rate.py --dataset polblogs --function hang --block constant --lr 0.005 --dropout 0.4 --input_dropout 0.4 --batch_norm --time 15 --hidden_dim 128 --step_size 1 --runtime 10 --add_source --batch_norm --gpu 1 --epochs 800 --patience 150
#HANG
python run_metattack_rate.py --dataset pubmed --function hang --block constant --lr 0.005 --dropout 0.4 --input_dropout 0.4 --batch_norm --time 3 --hidden_dim 64 --step_size 1 --runtime 10 --add_source --batch_norm --gpu 1 --epochs 800 --patience 150
#HANG-quad
python run_metattack_rate.py --dataset pubmed --function hangquad --block constant --lr 0.005 --dropout 0.4 --input_dropout 0.4 --batch_norm --time 6 --hidden_dim 64 --step_size 1 --runtime 10 --add_source --batch_norm --gpu 3 --epochs 800 --patience 150
Our code is developed based on the following repos:
The GIA attack method is based on the GIA-HAO repo.
The HANG model is based on the GraphCON framework.
The METATTACK and NETTACK methods are based on the deeprobust repo.
If you find our work useful, please cite us as follows:
@INPROCEEDINGS{ZhaKanSon:C23b,
author = {Kai Zhao and Qiyu Kang and Yang Song and Rui She and Sijie Wang and Wee Peng Tay},
title = {Adversarial Robustness in Graph Neural Networks: {A Hamiltonian} Energy Conservation Approach},
booktitle = {Advances in Neural Information Processing Systems},
volume = {},
pages = {},
month = {Dec.},
year = {2023},
address = {New Orleans, USA},
}