Skip to content

Latest commit

 

History

History

segmentation

Agent Attention for Semantic Segmentaion

Code and configuration files to reproduce semantic segmentation results of our paper. All experiments are conducted on ADE20K dataset based on mmsegmentation.

Results and Models

UperNet

Backbone Pretrain Lr Schd mIoU mAcc #params FLOPs config model
Agent-Swin-T ImageNet-1K 160K 46.68 58.53 61M 954G config TsinghuaCloud
Agent-Swin-S ImageNet-1K 160K 48.08 59.78 81M 1043G config TsinghuaCloud
Agent-Swin-B ImageNet-1K 160K 48.73 60.01 121M 1196G config TsinghuaCloud

Semantic FPN

Backbone Pretrain Lr Schd mIoU mAcc #params FLOPs config model
Agent-PVT-T ImageNet-1K 40K 40.18 51.76 15M 147G config TsinghuaCloud
Agent-PVT-S ImageNet-1K 40K 44.18 56.17 24M 211G config TsinghuaCloud
Agent-PVT-M ImageNet-1K 40K 44.30 56.42 40M 321G config TsinghuaCloud
Agent-PVT-L ImageNet-1K 40K 46.52 58.50 52M 434G config TsinghuaCloud

Usage

Dataset

Prepare ADE20K dataset, and change data_root argument in configs/_base_/datasets/ade20k.py to the dataset path.

ImageNet-1K Pretrained Model

Please place ImageNet-1K pretrained models under ./data/ folder and rename them as {MODEL_STRUCTURE}_max_acc.pth, e.g. agent_swin_t_max_acc.pth.

Installation

For convenience, we provide the conda environment file and pre-bulit mmcv. Please download the pre-built mmcv here, and place it under ../ We use an empty mmcv directory as a placeholder.

conda env create -f agent_segmentation.yaml
cd ../mmcv/
pip install -v -e .
cd ../segmentation/
pip install -v -e .

Inference

# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval mIoU

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval mIoU

Training

To train a detector with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE>

# multi-gpu training
torchrun --nproc_per_node <GPU_NUM> tools/train.py <CONFIG_FILE> --launcher="pytorch"

Citation

If you find this repo helpful, please consider citing us.

@inproceedings{han2024agent,
  title={Agent attention: On the integration of softmax and linear attention},
  author={Han, Dongchen and Ye, Tianzhu and Han, Yizeng and Xia, Zhuofan and Pan, Siyuan and Wan, Pengfei and Song, Shiji and Huang, Gao},
  booktitle={European Conference on Computer Vision},
  year={2024},
}