git clone https://github.com/eggonz/msc-thesis.git --recursive
cd msc-thesis
conda env create -f expert-slam-env.yaml
conda activate expert-slam-env
# Make sure running on gpu node
module purge
module load 2022
module load CUDA/11.7.0
python setup.py install
pip install open3d==0.16.0 # might need headless-open3d instead
pip install evo==1.25.2
python -m pip install -U setuptools pip
conda install -c conda-forge cupy cuda-version=11.7
Follow instructions from README at https://github.com/tfy14esa/evaluate_3d_reconstruction_lib.git, by Erik Sandstroem.
Skip step 2.
In step 3, use the corresponding path to your conda environment (e.g. #!/gpfs/home1/egonzalez/.conda/envs/expert-slam-env/bin/python3.10
).
Run installation (last step) and done.
You can use provided scripts:
TARGET_DIR=/path/to/expert_data
sh scripts/download_cull_replica_mesh.sh $TARGET_DIR
sh scripts/download_replica.sh $TARGET_DIR
sh scripts/download_tum.sh $TARGET_DIR
-
Download droid slam checkpoint from https://github.com/princeton-vl/DROID-SLAM, and place it under
pretrained/droid.pth
-
Point-SLAM:
wget "https://github.com/eriksandstroem/Point-SLAM/raw/main/pretrained/middle_fine.pt"
- FastFlowNet:
wget https://github.com/ltkong218/FastFlowNet/raw/refs/heads/main/checkpoints/fastflownet_ft_mix.pth
Place downloaded checkpoints under ./pretrained
.
# module purge
# module load 2022
# module load CUDA/11.7.0
source activate expert-slam-env
cd
cd msc-thesis
Use the following example commands to run the first 100 frames in debug mode.
Feel free to remove those flags or modify configuration files.
All configuration files for different experiments can be found under ./configs
.
python run.py configs/exp_fixed/Replica/mean_office0.yaml --debug --max_frames=100 --make_video
python run.py configs/exp_psnr/Replica/office0.yaml --debug --max_frames=100 --make_video
Training:
python trainer.py configs/exp_learned/trainer_lie.yaml --debug
Testing:
python tester.py configs/exp_learned/tester_replica.yaml --debug --ckpt=/path/to/output_folder/ExpertTrainer/learned_expert/DEBUG_expL/2025-01-01T00:00:00.000000/ckpts/mixer_latest.pth
Use scripts/vis_ply.py
script to visualize a reconstructed scene interactively using Open3D.
Run jupyter notebooks under notebooks/
to generate analysis plots for PSNR-Expert and Learned-Expert Training.